m denotes Lebesgue measure on R. In some problems it denotes Lebesgue
measure on R”.
Problem 1

Given f € C([0,00)) such that f(z) — 0 as & — oo show that for any € > 0
there is a polynomial p such that |f(z) — e "p(z)| < € Vz € [0, 00).

[See also problem 109 below]
We give two proofs:

1. Let g(z) = f(—log(z)),0 < < 1 and ¢g(0) = 0. By Weierstrauss
Approximation Theorem we can find a polynomial ¢ such that |g(z) — q(x)| <
€/2 for 0 < x < 1. Note that the constant term c¢g in ¢ satisfies the inequality
lco| < €/2. If q1 = q — ¢g then |g(z) —q1(z)] < e for 0 < = < 1. We can

write ¢1(z) as Zc ixd. We now have the inequality |f(x) — che_jx < €

for all z > 0. From this we conclude that if the result holds for the functions
f(x) = e77% j € N then it holds for the given function f. We now prove the
result for these functions using induction on j.

For 7 = 1 we take p = 1. Suppose |efjf” — e’f”p(x)| < e Vz € [0,00) for

some polynomial p. Then ‘e_(j“‘l)“ —ef(H%)mp(%x)‘ < e Vx € [0,00). it

suffices to show that ‘ To(x)p (lﬂ ) — e*(H%)mp(%m)) < € Vz € [0,00) for
2N

some polynomial ¢. Let ¢(z Z (/i) x/j) where N is a positive integer to be
k=0

specified. We first note that M = sup{‘ef(lf%)zp(%x)‘ x>0 <ooifj>1.

This is also true for j = 1 because p( ) =1 in this case.

Thus ’e*mcé(z)p(%x) —(+5)e p(l‘” )’ < Me=®/i ’%‘ Here we
aN-1 2N -
use that fact that Z zi/j <e /i< Z % and hence |e*“"/j — gf)(x)’ <
- k=0 k=0
%‘ . The last expression attains its maximum at the point x = 25N and

the maximum value is Me ™2V (%év J\);fv . By Stirling’s Formula [lim % =

V27| we see that desired inequality holds if N is sufficiently large.

Manjunath Krishnapur’s solution:

Consider the Banach space of all continuous functions on [0, 00) vanishing at
oo with the supremum norm. We have to show that the subspace {e " "p(x) : p
is a polynomial} is dense in this space. If not, then there is a continuous
linear functional which vanishes on this subspace but not everywhere. By Riesz

Representation Theorem there is a real measure p such that / e p(x)du(z) =0



for every p but p # 0. Writing p as u; — po where p; and p, are positive finite
measures we have /e_”p(m)d,ul (x) = /e_xp(a:)d,ug(m). Let dvy = e *du, and

dvy = e *dug. Then /p(x)dl/l(m) = /p(:z)dz/z(a:) for every polynomial p but
vy # va. Let ¢;(2) = /ethl/j(t),j = 1,2. These functions are holomorphic in

{Rez < 1}. Also ¢§") (0) = g") (0) Vn. > 0. From the power series expansion
of these two function in {z : |z] < 1} it follows that they coincide on this ball,
hence on {Rez < 1}. In particular they coincide on the imaginary axis which

means /eiStdyl(t) = /eiStdyg(t) Vs € R. This is a contradiction.

Problem 2

If K is a compact subset of R” show that the set A = {z € R" : d(z, K) = 1}
has Lebesgue mesure 0.

We first show that if K C B(0,3) then z € A = to ¢ A for any t €
(0,00)\{1}. Using polar coordinates (c.f. Real and Complex Analysis by Walter
Rudin, 3rd Edition, Problem 6, Chapter 8) we conclude from this that A has
measure 0. By translation the same conclusion holds if K is contained in some
open ball of radius % The general case is handled by noting that K is the union
of a finite number of compact subsets of diameter not exceeding % and any point
in A has distance 1 from one of these subsets.

Let K C B(0,1),d(z,K) =1and 0 < t < 1. Let y € K with ||z —y|| = L.
Then |tz — y||2 —|lz — y||2 = |[tx — :EH2+2 <tx—z,x—y>= |tz — x\|2+2(t7
1) H:c||272 <tr—z,y >= (t2-1) Hx||2+2(17t) lz]l [ly]| - Now note that ||y| < %
and [|z]] > 1— 1 = 2. Hence Itz —y||* — ||z — y||* < 0 proving that tz ¢ A.
Similarly if ¢ > 1 then ||tz — y|* — |z — y[|* = (2 = 1) |=[|* +2(1 — t) ||=|| [ly]| >
2(t* = 1) —2(t—1)% > 0 so tx ¢ A. This completes the proof.

Problem 3
If f, — 0 a.e. on a finite measure space (€2, F, ) show that there is a
sequence {a,} 1 co such that a, f, — 0 a.e.

Solution: .

May suppose f, > 0Vn. Using 1};’}” we see that we may suppose 0 < f,, < 1.
Using sup{fn, fn+1, fnt2, ...} we may suppose f, | 0. By Egoroff’s Theorem
we can find a set Ej such that pu(Ef) < 2% and integers nj T oo such that

0 < fu < 2% on Ej for n > ny. Let a, = 252 for ny < n < njpyq. For

ng <1< Mg, anfo < 282 f, < 27%/2 on E,. Now Zu(Ek) < 00 so almost
k=1
all points belong to Ey for all k sufficiently large.

Problem 4



Let 21,25 € R2. If A C R? has positive Lebesgue measure show that there
exists y € R? and t € R\{0} such that y + tz; and y + tz2 both belong to A.

More generally if F' is a finite subset of R™ and m(A) > 0 then there exists
y € R? and t € R\{0} such that y + tz belongs to A for all z € F.

Solution: if 1 = x5 we can take any point u in A and take y = u—x1,t = 1.
Let 1 # 22. Let T be a rotation of R? such that T(z; — x2) = ae; where
a = ||z1 — x2|| and e; = (1,0). Let B = T(A). Not all the sections of B* are all
singletons. [B® = {t: (t,s) € B] because B has positive measure. If (¢1,s) and
(t2,8) € B with t; # to then Jwy,wy € A with T'(wy) = (1, ), T (w2) = (2, 9)
so wy —wy = (t1 —t2)T 1(e1) = é(tl —tg)(x1 — x2). Hence wy — é(xl —x9) =
'U}Q—é(l'l—l'g). Now take s = é(tl—tg) and y = wy—sx1. Then y+sz1 =w; € A
and y + szy = wy + s(x2 — 1) = w1 + (w2 — wy1) = wy € A, as required.

[ A result if Steinhaus in Fund. Mathematica, 1920 says that if A has positive
measure in R™ and F' is any finite subset of R™ then we can find ¢ € R™ and
t € R such that ¢+ tz € A for any x € F. A special case of this (obtained by
taking n = 1 and F' to be {1,2,3} is the following: if A is a measurable subset
of Randifa € A,be A,ja#b= “T'H’ # A then A has measure 0. Is there a
simple proof of this?].

Problem 5
If A and B are subsets of R of positive measure show that A + B contains
an open interval.

Solution: w.o.l.g. assume that the sets are bounded. I4 - Ig is continuous
and positive at some point, hence positive in some interval.

Problem 6

If A is a measurable subset of R such that a € A;b € B,a # b = ‘IT“’ ¢ A
then A has measure 0.

Remark: let A be the set of all numbers in (0, 1) whose expansion to base 4
has all coefficients in {0,1}. Then A has the property stated here.

Proof: w.l.o.g. Aisbounded. Let 6 = m(A). Let f be a continuous function :
R — R such that / [Ia — f| < 8/7. Then/ [Ta(x)a(x+t)a(z—1t)— f(z)f(z+t)f(z —t)|dr <

35
- and

Ta (@) a(@+8) T (z—t) = 0V if t £ 0. We get /f(x)f(a:—i—t)f(:n—t)d:c <3,
Let t — 0 to get /f?’(:zc)dx < 3. This and the inequality / [Ia — f] < 6/10

give / I3 (z)dz < & which yields the contradiction § < 2.

Problem 7 [Steinhaus, 1920, Fund. Math.]



Let A be a measurable subset of R with positive measure. Let x1, o, ..., Tk
be distinct real numbers. Then there exists ¢ € R and ¢ € R\{0} such that
c+tx; € Afor 1 < i < k. [ Thus, if we are given dy,ds,...,d; € (0,00)
we can fing points in A such that distnces between them are in proportion to
dy,da, ..., dg).

Proof: this is similar to the solution of problem 6: just look at / [Ta(x 4 txy)La(x + tas)... Ja(x + tag) — f(:

Problem 8

Let f : [a,b] — R. Then f is Lebesgue measurable if and only if the following
condition holds: for any € > 0 and any measurable set A C [a,b] with m(A) > 0
there is a measurable subset B of A such that m(B) > 0 and the oscillation of
f on B is atmost e.

Proof: if f is measurable then the oscillation of f on AN f~1{[(i — 1)e,i€)}
is atmost € and this set has positive measure for some 1.

Now suppose the given condition holds. For each set A of positive measure
and each € > 0 let F 4 . be the class of all measurable subsets of positive measure
contained in A the oscillation of f on which is atmost e. Let §; = sup{m(B) :
B €F|q),c}- Choose a set By in F 4, such that m(By) > 61/2. If m(B1) =b—a
we stop here. Otherwise we define 6o = sup{m(B) : B €Fpe .} and choose
By C BY such that m(Bg) > 02/2. If m(B1UBs) = b—a we stop here. Otherwise
we proceed to find Bs C (By U Bg)¢, etc. We get disjoint measurable sets
Bji, Ba, ... such that the oscillation of f on each of these sets is atmost e. Claim:

m(UB,) = b — a. If this is false then there is a subset E of (U B,,)¢ such that

0 = m(E) > 0 and the oscillation of f this set is atmost €. Note that there
are infintely many B s in this case and J,, < 2m(B,) — 0. Hence there is an
integer n such that §,, < /2. Now E C (B1UByU...U B,,)¢ and the definition
of é,, shows that 6,, > m(E) = 0 > 2§,, a contradiction. Now let g, be f(z,) on
B,(n =1,2,...) where z,, € B,, is arbitrary. We get a measurable function g,
with | f(z) — ge(z)| < e. It follows that f is measurable.

Problem 9
There is no metric d on the set of all Borel measurable maps : R — R such
that f,, — f pointwise if and only if d(f,, f) — 0.

27 and there is no sequence from the

Proof: Ig(z) = lim lim [cos(m!mz)]
m—0oon—0o0

set {[cos(m!mx)]?" : m,n > 1} converging pointwise to I. This follows from

the fact that pointwise limit of continuous functions is continuous on a dense

set. [ cf. Hewitt & Stromberg, Exrecise 6.92]

Problem 9
If (an,bn) 1 (a,b) and f € C*°(R) is a polynomial on (an,b,) for each n
show that f is a polynomial on (a,b).



Proof: if f = p, on (an,b,) then p,11 — p, = 0 on (an,b,) which implies
Pn = pn1. Hence f = p; on (a,b).

Problem 10
If f € C®°R) and, for each z € R there is an integer n > 0 such that
f™(x) =0 then f is a polynomial.

Proof: since R = U{z : f((z) = 0} we conclude, from Baire Category
Theorem, that f is a polynomial on some open interval. Let U be the union
of all open intervals on which f is a polynomial. U is the union of maximal
intervals on which f is a polynomial. Such intervals exists by Problem 9. We
get disjoint intervals (a1, b1), (a2, b2), .... We such that f is a polynomial on each
of these intervals and their union is U. Let H = U®¢. Then H is closed and its
interior is empty. [ if it contains an open interval then a f is a polynomial
on a subinterval of the interval, which is a contradiction]. Suppose H has an
isolated point a. Then 3 § > 0 such that [a — d,a+ 6] N H C {a}. On each of
the intervals [a — §,a — 1] (k > %), f is a polynomial. [This is because this
compact interval is contained in U and hence each point has a neighbourhood
on which f is av polynomial]. By Problem 9 f is a polynomial on [a — §,a).
Similarly, f is a polynomial on (a,a + ¢]. This implies, of course, that f is a
polynomial on [a — §,a + J] contradicting the fact that a € H. We have proved
that H is a perfect set. Suppose H # @. Now H = U{z € H : f™(z) = 0}
and Baire’s Theorem shows that there is an integer m and an interior point
zo of {x € H: f((2) = 0} in H. Hence there is an interval (o, 3) such that
o€ HN (o, B) and HN (o, B) € {z € H : f")(z) = 0}. We claim that f is a
polynomial on («, 3). [This would imply that (o, 3) C U contradicting the fact
that H N (o, B) # 2]. Let y € (a, B). If y € H then f™ (z) = 0. Otherwise,

y belongs to a maximal interval on which f is a polynomial. Let y > x.
Then the maximal interval (a,b) on which f is a polynomial does not contain
xg 80 zo < a. Also a (and b) belong to H by maximality. Note that f(x) =

o0
Z %(m—a)” on [a, b]. We know that f(™)(a) = 0Vn > m. Indeed, f(")(z) =
n=0
0Vn >mVz € HN(a,8) as seen by an induction argument using the fact
that each point of H N («, 8) is a limit of a sequence of distinct points of H N

N-1
(o, B). Now f(z) = Z %(m —a)" on [a,b]. But y € (a,b) so f™(y) =0
n=0

¥n > m. We have now proved that f(™(y) = 0 Vy € H N (a, ) as well as
for all y € (a, 8)\H and hence f is a polynomial on («, ). This leads to a
contradiction (as already observed) and hence H = &. But then each point of
R has a neighbourhood on which f is a polynomial which implies that f is a
polynomial on R. [ Use compactness to conclude that f is a polynomial on each
of the intervals [—n, n] and then use Problem 9 to complete the proof].

Problem 11



Let (X,d) be a complete metric space and A C X. Show that there is an
equivalent metric on A which makes it complete if and only if A is a G5 in X.

Proof it A = ﬁU with each U, open in X then di(z,y) = d(z,y) +

oo
1 d(acUC
§ :2

1+‘d<w TE) T A, U%)

defines a metric with desired properties.

Conversely let d; be a metric on A which makes it complete and which is
equivalent to d. Let E,, = {x € A : diam(B(z,6) N A) < 1 for some § > 0}
where diami denotes diameter w.r.t. d;. It is clear that A C FE, Vn. Let
xo € NE,. For each n diam;(B(x,0,) N A) < % for some d,, > 0. Of course, we
can assume that ¢, — 0. There is a sequence {u;} C A such that u; — z in
(X,d). Given € > 0 we can choose n such that + < e. Now d(u;,z) < 6, and
d(ug, o) < 0, for j and k sufficiently large and hence d;(u;,ur) < e. Hence
{u;} is Cauchy in the complete space (A,di). Let w € A and dy(u;, w) — 0.
Since d; is equivalent to d we get d(u;,w) — 0 and since u; — z in (X, d) we
get zg = w € A. We have now proved that A = NE,,. If we show that each F,

is open in A then we can use the fact the closed set A is a G5 to complete the
proof. If z € E,, then for some § > 0 diamy (B(z,8)NA) < L. Let d(u,z) < §/2.

Then diam;(B(x,8/2) N A) < 1. This proves that E, is open in A for each n.

Problem 13
If {a, }, {bn} are sequences of real numbers such that a,, cos(nz)+b, sin(nz) —
0 asm — oo on a set F of positive measure show that a,, — 0 and b,, — 0.

Proof: Let r, = (a2+b2)*/? and ("" : 7—") = (cos ay, sin a, ). Then a,, cos(nz)+

by, sin(nz) = r, cos(nz — ). Thus r COSQ<n.’IJ —ay) =0V e E.Ifr,, >§
for some § > 0 and sequence {ny} 1 oo then /cosz(nkm — ap, )dz — 0 which
E

implies / [1 + cos(ngx — ap,)]dz — 0. Riemann Lebesgue Lemma now shows

E

that /d:zc = 0, a contradiction. Hence r,, — 0 and a,,, b, — O.
E

Problem 14

If £ is a set of finite measure in R show that /cos2m(nac — ap)dr —

E

2 e
m(E)% ( WT 272™M as n — oo for any positive integer m and any o/,s € R.

Use this to prove the following generalization of Problem 13: lim sup |a,, cos(nx) + b, sin(nx)| =

lim sup[a? + b2]'/2 almost everywhere if {(a,,b,)} is bounded.



Proof: We can write cos®™y = ¢y + c1c08(2y) + ... + ¢ cos(2my) for
suitable real numbers cg,cq,...,Cm, for all y € R. This can be seen easily

by an induction argument. To compute ¢y we integrate both sides from 0
27

to 2. This gives ¢y = 3- / (cos®™ 1)dy. Repeated integration by parts gives

0
us ¢ = %ﬂ( 27:;1 )22’”. Now /coszm(nx — ay)de = /ZCJ' cos(2j(nx —
B 7=

ap))dy — com(E) as n — oo by Riemann Lebesgue Lemma. This proves the
first part. Now let (an,b,) = (p,, costn, p, sint,) (with p,, > 0). We claim that

/lim sup p2™ |cos(na — t,)|*" dz > lim sup /pim |cos(na — t,)]*™ da. This fol-

E E
lows by applying Fatou’s Lemma to (sup p,,)2™ — p2™ |cos(n@ — t,,)|*™ . Thus

/limsup p2m [cos(nz — t,)|*™" do > (limsup p,,)*"m(E) 5= ( 2777? > 272m hy
E
the first part. Since this inequality holds for any set E C [0, 27] of measure we

conclude that limsup p2™ |cos(nz — t,)*"" > (limsup Pr)? ™ o ( 27;n ) 2-2m

a.e.. Hence limsup p,, [cos(nz — t,)| > (limsup p,,)(5= ( 2777? )Q—Zm)1/2m ae.

By Stirling’s formula we see that ( 2;7 > 272m > \/% for all m sufficiently large

c )1/2m s

(with ¢ > 0). Hence limsup p,, |cos(nxz —t,,)| > (limsup pn)(%ﬁ
limsup p,, as m — oo. Since p,, [cos(nx — t,)| < p,, always, the proof is com-
plete.

Problem 15
If f:R? — R is separately continuous then it is continuous on a dense set.

- Proof: let fo(z,y) = f(51y) +nle— S (5,y) — F(5H )] if 51 <
~. Then each f, is continuous on R? and f,,(x,y) — f(x,y) for any (z,y) €
This implies that f is continuous on a dense set.

x
R-.

Problem 16

Prove or disprove: if ¢ : [0,00) — R is continuous and ¢(z)p(x) — 0 as
x — oo for every polynomial p then the conclusion of Problem 1 holds with e™*
replaced by ¢(z). [i.e. given f € C([0,00)) such that f(x) — 0 as & — oo and
€ > 0 there is a polynomial p such that |f(z) — ¢(x)p(z)| < € Vx € [0, 00)].

This is false. We have /e* Ve sin(/z)z"de = 0 for n = 0,1,2.... [See Feller
0

Volume II, p. 224]. Let du(z) = e 2 V% sin(/z)dz and ¢(z) = e~ 2 V%, Then



& is a real measure which integrates every function of the type ¢(z)p(z), where
p is a polynomial to, 0. Hence such functions are not dense in the space of
continuous functions on [0, 00) vanishing at co with the supremum norm.

Problem 17
Show that any o— algebra on N is generated by a finite or countable infinite
partition.

Proof: let Fbe any o— algebra on N. Say n ~ m if, for every F' € F either
n and m both belong to A or both belong to A°. We claim that the equivalence
classes under this equivalence relation form a partition which generates F. Let
W be the equivalence class of n. If m ¢ W then 3 A,, € F such that n € A,
and m ¢ A,,. We now verify that W = ﬂ Ap. Itm ¢ W thenm ¢ A, If

mgWw

m € W then, for any k ¢ W we have n € Xk and k ¢ Ai. But m ~ n and hence
m € Ay. It follows that m € ﬂ A,,. This proves that W = ﬂ A, € F.
Thus equivalences classes under ~ form a partition of N by sets from F. Of
course, any partition of N is necessarily finite or countable infinite. Now let
A € F. We claim that A is the union of all equivalence classes that are contained
in A. Let n € A. We have to show that the equivalence class V' containing n is
a subset of A. If it contains a point m € A¢ then m ~ n,n € A and m € A°¢
which is a contradiction. This finishes the proof.

[Corollary: any measure on any o— algebra on N extends to a measure on
the power set: pick an element from each member of the partition above, call
these points z1,Za, ... and define v(E) = Zanéxn where a,, is the measure of

the member of the partition that contains x,,].

Problem 18 ~
If f:]0,00) — [0,00) is continuous and if Zf(nx) < oo forall z > 0
n=1

show that /f(x)dx < oo. If Z f(nz) = oo for all z > 0 does it follow that
0

n=1
/f(.’l:‘)dl‘ =o00? If f:[0,00) — [0,00) is continuous and /f(a:)dx < oo does it
0 0
follow that Z f(n) < o0?

n=1

Since [0,00) = U {z : Zf(nx) < N} we conclude from Baire Cate-
N=1 n=1
gory Theorem that there is an integer N and an open interval (a,b) such that



(o) b e}
Zf(nx) < N Vz € (a,b). Hence /Zf(nm)dx < N(b — a). This gives
n=1

n=1 a

50 bn 00 0o J
Z%/f(y)dy < o0. This, in turn, implies Z% Z /f(y)dy < 0.
n=1 2 n=1 l+4an<j<bn;”;

J
00

Since Z L — log(2) we are done.

{n:1+an<j<bn}
The second assertion is true and the proof is similar.

The third assertion is false:
let f(n) =1, f(x) =0if z ¢ [n — an,n + ay], f "linear" in [n — ay,, n] and

[n,n + «,] where o, > 0 and Z oy, < 00.

n=1

Problem 19

Let f:[0,00) — [0,00) is continuous and f(z+y)— f(z) — 0 as  — oo for
each y € [0, 00). Show that the convergence is uniform for y in compact subsets
of [0, c0).

Let gn(y) = sup{|f(z+y) — f(z)| : * > n}. Then {g,} is a sequence of
bounded measurable functions conveging poitwise to 0. [We remark that if f
is uniformly continuous then ¢/, s are continuous and hence they converge uni-
formly to 0 on compact sets]. By Egoroff’s Theorem there is a set E C [1, 2] such
that m(F) > 0 and g,, — 0 uniformly on E. The set E + F contains an interval
(a,b) with 0 < a < b < co. We now observe that g,(y1 + y2) < gn(y1) + gn(y2)
Yy1,y2 € [0,00). Hence g,(y) — 0 uniformly for y € (a,b). For y1,y2 € (a,b)
with y1 > yo we have |f(z +y1 —y2) — f(@)] < [f(z+y1 —y2) — flz —p2)| +
|f(x —y2) = f()] < gm(y1) +gm(y2) provided z —ys > m Note that z—ys > m
ifx>b+m.Let k=[b+m]+1. Then z > k = |f(z +y1 —y2) — f(2)] <
Im (Y1) + gm(y2) 50 gr(y1 — y2) < gm(y1) + gm(y2). This proves that g, — 0
uniformly on (0,b — a). Since gn(y1 + y2) < gn(y1) + gn(y2) Yy1, 72 € [0,00) we
now conclude that g,, — 0 uniformly on compact sets.

Remarkl

gn — 0 uniformly on [0, 00) if and only if f is a constant. [ Indeed tlg](f)lof(t) =
f(z) Y in this case].

Remark 2

Under the hypothesis of this problem, f is necessarily uniformly continuous.
[[f(x+y)— f(z)| <eify €]0,1] and = > n and n is sufficiently large. Since
f is uniformly continous on [0,n + 1] it is so on [0, c0).

Problem 20



Does there exist a non-constant bounded C*° function : R — R such that
f(")(x) >0Vn >0,V eR?

If yes, give a counter-example. If no, give a real-analytic proof (as opposed
to a complex analytic proof).

No. If such an f exists and a > 0 then by Taylor’s Formula with remainder
N
we see that f(z) > Z %(w —a)” for x > a, N € N. This shows that
n=0
f(z) — o0 as  — oo unless . f(™(a) =0 for n > 1.

Problem 21

Find a necessary and sufficient condition on a continuous function f on [0, 1]
under which it can be approximated uniformly by polynomials with integer
coefficients.

We claim such an approximation is possible if and only of f(0) and f(1) are
integers. 'Only if’ part is obvious. For the 'if’ part let g(z) = f(z)—f(0)+[f(0)—
f(1)]xz. Then g is continuous and g(0) = 0 = g(1). Let {pr} be the set of all

Pk
primes (in increasing order) and hy(z) = Z[g(pj—k)pk] ( Pr > pikxpk*j(l —x)PE

i=0 !

where [f(;%k)pk] is the greatest integer not exceeding f(;—;)pk. Since g(0) =0 =

g(1) and ( p]k > is an integer multiple of py for 1 < j < pr — 1 we see that
Pk )

hi has integer coefficients. Also |hi(x) — Zg(p]—k) ( Z;k ) aPe=I(1 — z)Pr| <
§=0

pr—1
Z ( ];k > pik:cpk*j(l —z)Pr < pik[x + (1 —a)Pr = pik Finally we recall that
j=1

iggp (7 )arsa = gta) = £0) = FO)+170)~ SV uniformiy
B
on [0, 1].

[ What if [0, 1] is replaced by a compact interval [a, b]7]

Problem 22

If A C R is measurable, {z,} is dense and z,, + A = A Vn show that either
m(A) =0 or m(A°) =0.

If m(A) > 0 and m(A°) > 0 then 3 a < b such that (a,b) C A — A°. Also
there is an interger n such that —z, € (a,b). But then —z,, = & — y with
re€AyeA°soy=x+x, €z, + A=A, a contradiction.

10



Problem 23

Let f - [0, 1] — R be a function such that for every € > 0 there is a § > 0

with Z |f(b;) — f(a;)| < € whenever n > 1 and Z |b; — a;| < 6. Show that f

j=1
is L1psch1tz [ See Problem 407 for another solution].

xT

Since f is absolutely continuous we can write f(x) = / g(t)dt for some

0
integrable function g. Let = be a Lebesgue point of g. Taking a; = x,b; = x+ %

" z+48/2n
for 1 < j <n we get Z'f(bﬂ) — f(a;)| < e. Hence n / g(t)dt| < e. This
j=1 y

holds for all n and since z is a Lebesgue point of g we get [g(z)| < 2¢. We have
proved that g is an L*° function. Hence f is Lipschitz.

Problem 24

o0
Let a; < b; Vi € I. Show that U[flmbi] can be written as U [a;, ,b;,] for
i€l n=1
some sequence {i,} C I.

Proof: let A = U[@mb' | and B = U (@i, b;). If & € A\B then z € [a;,, b;,]
icl iel
for some g and (a4, b;,) C (o, B) for some component («, ) of the open set B.

Clearly, = € [o, B]\(a, B). Hence A is the union of B and an atmost countable
set (the end points of the components of B).

Problem 25

Let a < b and F be a collection of closed non-denerate intervals such that
x € [a,b] implies there exists § > 0 (possibly depending on x) such that every
closed interval of length less than ¢ containing = belongs to F. Show that there
is a partition {¢;} of [a, b] such that [t;_1,t;] € F Vi.

Let y = supS where S = {z € [a,b] : a < t < x = there is a partition
{t;} of [a,t] such that [t;_1,t;] € F Vi}. Clearly a € S. Since [a,a + 0] € F for
0 sufficiently small it follows that y > a. We claim that y = b. If y < b then
[y—d,y+e€] € F for 6 and e sufficiently small and there is a point s in (y — §, y]
that belongs to S. But then [a,y — 0] has a partition whose sub-intervals are all
in Fand [y—0,y+e¢] € Fsoy+ee S for e sufficiently small. This contradicts
tha definition of y. Thus y = b. Since [b — §,b] € F for § sufficiently small it is
clear that there is a partition {t;} of [a, b] such that [t;_1,t;] € F Vi.

Problem 26

11



Prove that [a,b] is compact using Problem 25.

Let {U; : i € I'} be an open cover of [a, b]. If x € [a, b] then x € U; for some .
Fix such an i for each z. Let F, be formed by all closed intervals containing x
and contained in U; and F be the union of the families F,,z € [a, b]. Problem
25 now applies and we get a partition {¢;} of [a, b] such that [t;_q,t;] € F Vj.
But [t;_1,t;] C Us; for some 4; and the sets Us; form a finite subcover of [a, b].

Problem 27

Let f : R — R be a function such that for each real number x there is a
0 > 0 with f(y) > f(z) Yy € (z,2 +0) and f(y) < f(z) Yy € (z — J,x). Prove
that f is non-decreasing.

For each x consider the collection F, of all intervals [c, d] containg z such
that f(y) > f(z) Vy € (z,d] and f(y) < f(z) Yy € [e,z). Let F be the union
of the families F,,x € [a,b] where [a,b] is any compact interval in R. By
Problem 26 we can find a partition {¢;} of [a, b] such that [t;_1,t;] € F Vj. In
each interval [t;_1,t;] there is a number x such that f(t;) > f(z) > f(t;-1).
Thus, f(b) > f(a). Since a and b are arbitrary points with a < b we are done.

Problem 28
Let f : [a,b] — R be differentiable. Show that f is absolutely continuous if
and ony if it is of bounded variation.

If f is absolutely continuous then it is of bounded variation, as seen easily
from the definition. Let f be differentiable.If f is also of bounded variation
then we claim that f’ € L'([a,b]). Once this claim is proved we can apply
Theorem 7.21 of Rudin’s Real and Complex Analysis (Third Edition) to finish
the proof. For proving the claim it suffices to show that the derivative of any

monotone function on [a,b] (which exists a.e.) is integrable. Let f be non-
1

1
decreasing on [a,b]. For this note that /f’(t)dt < liminf/wdt =
0

0
1h

1
limin(} [ (¢ + Wit & [ F(0)dt) < timin {1+ ) = FO)} = £1) = F(0)
where wcodcﬁne f(¢) to bcof(l) for ¢t > 1.

Problem 29
Let f : R — R be a function and F(z) = sup{f(z +h) : 0 < h < 6} €
R U {oco}. Then F has right and left limits at every point.

Proof: If xy < & < 29+ d then [,z + 0] = [z, 20 + 0] U [xo + J, z + J]. Hence
F(z) = max{sup{f(y) : ¢ <y < xo+},sup{f(y) : o+ <y < x+d}}.
This is the maximum of two monotonic functions (one decreasing and the other
increasing) and hence lilm F(z) exists. Similarly liTm F(z).

xlxo xzTxo
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Problem 30
[This is related to Problem 24 above]. Let A be the union of a family of
closed balls (of positive radius) in R™. Is A necessarily a Borel set?

No! Let F be a non-Borel subset of R and A be the union of the balls
B((t,0),1) (t € E) in R2.Then AN{R x {1}} = E x {1}. Hence A is not Borel.

Remark: it is known that an arbitrary union of closed balls (of positive
radius) in R™ is Lebesgue measurable.

Problem 31

Prove or disprove that if p is a polynomial of degree n with leading coefficient
1 then {z : p(z) > 0,p'(z) > 0,...,p™ (x) > 0} is an (open) interval (which may
be empty, of course).

True! Note that the result is obvious if n = 1. Assume that it is true for
polynomials of degree less than n. Then {z : p(z) > 0,p'(z) > 0,...,p"™) (z) >
0} = {z: p(x) >0} N{z: q(x) > 0,¢'(x) > 0,..,¢" " V(x) > 0} where ¢ = p'.
The set {z : q(z) > 0,¢'(x) > 0,...,¢™ Y (x) > 0} is an open interval I (by
induction hypothesis) on which p is strictly increasing. The set {z : p(z) > 0} is
the union of a finite number of disjoint intervals (determined by the real zeros of
p) and since p is increasing there can be only one of these intervals intersecting
{z:q(x) >0,¢'(x) >0,...,q" V() > 0}. Hence the result.

Remark: the same argument works for {z : p(z) < 0,p/(x) < 0, ...,p("™(z) <
0}. Thus, there is no need to assume that the leading coefficient is 1.

Problem 32

Let f € C[0,1] and 0 < ¢, | 0. Suppose there is a constant C' € (0, c0) such
that |f(z +t,) — f(x)] < Ct, for all n and = with 0 < z < z + ¢, < 1. Show
that f absolutely continous and that it is also of bounded variation. Need f be
Lipschitz?

Let 0 < a < b < 1. For n so large that ¢,, < b — a we have the inequalities
|f(z; +tn) — f(z;)| < Ctp, where z; = a + jt, for j =0,2,... .k, = [bt_na] -1
These inequalities give ‘f(a) — fla+ t,L[l?Tf’])‘ < C(ky, + 1)t,. Letting n — oo
we get |f(b) — f(a)| < C(b— a). We have proved that f is Lipschitz!

Remark: if Mﬂtirw — 0 "boundedly" for some {¢,} | 0 and f is con-
tinuous then f is a constant.

Problem 32
There is a set E C [0,1] of measure 0 such that every Riemann integrable
function f on [0, 1] has at least one point of continuity in E.

Let QN [0,1] = {r1,re,...} and E = ﬂ U(rk — 3%, Tk + 3o%). Then E
n=1k=1
is a dense Gj of measure 0. Let f be Riemann intergable on [0,1] and D be
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the points of discontinuity of f. Then D has measure 0 and hence D¢ is dense.
oo

Further D¢ is a Gs. [ It is the set ﬂ {z : Of(x) < L}]. If we show that the
n=1

complement of any dense Gy is of first category it will follow that E° and D
are both of first category. Hence, E°U D # [0, 1] which means F' N D¢ # &, as

required. Let V,, be open Vn and ﬂ V.. be dense. Then (ﬂ Vn)e = U VeIt

n=1 n=1
remains only to observe that V¢ is a closed set with no interior.

Problem 33

If f e L'(R) and / |f(z+vy) — f(z)|dx = o(y) as y — O+ show that f =0
a.e.. A
Let s € R. Then /ei“f(a:+y)dx = e~ % f(s) and hence

‘/ei”f(x +y)dz — /ei”f(x)dx

0 + . However, efszy_l — —is as y — 0+ so f(s) = 0 for all s # 0. Since f is

eV f(s) - f(s)
< /If(x+y)—f(x)ldx = o(y) as y —

continuous we get f(s) = 0 for all s which implies f = 0 a.e.

Second proof: let @ and b be Lebesgue points of f with a < b. Then
aty bty b+y b b

/f t)dt — L /f :—f/f )d + /f t)dt = /f(t)dt—i/f(t—i—

a-+y
)dt — 0 by hypothems Hence f(b) = f(a). ThlS proves that f is a.e. constant
and the constant must be 0 by integrability.

Problem 34

Let 1 be a finite positive measure (or a complex measure) on the Borel o—
field of R. Let 0 < ¢ < 1 and suppose m(A) = ¢ = u(A) = 0 (where m is the
Lebesgue measure). Show that u = 0.

We have u([z,z + ¢]) = 0 Vz. Integrating w.r.t z from —oo to b we get
b

/ /I[z,erc] (y)dp(y)dz = 0. By Fubini’s Theorem this gives / / Ity—cy)(x)dzdp(y) =

0. This means /{min{y, b}—y+ctdu(y) = 0Vb. If by < by we get /{min{y, ba}—

b2 oo
min{y, b1} }du(y) = 0. Thus /(y—bz)du(y)+/(b2 —b1)du(y) = 0. Let x be any
bl b2
real number such that %in})“(‘”%fm exists (and is finite). Taking by = x—4 and
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by = x + 60 in above equation, dividing the equation by 2 and letting § — 0 we
get p(x, 00) = 0. This holds almost everywhere and hence everywhere (because
pu(x,00) is a right-continuous function). This implies that p(A) = 0 for every
Borel set A.

Problem 35
Show that any f € C[0,1] can be written as g + h where g and h € C]0, 1]
and they are both nowhere differentiable.

Let S ={f—¢ :¢ € C[0,1] and ¢ is nowhere differentiable}. Since the
complement of the set of nowhere difrferentiable functions is of first category
we see that S€ is of first category in C]0,1]. This implies that there is atleast
one nowhere differentiable function in S. Let g be such a function Then g and
f — g are both nowhere differentiable.

Remark. Similarly we can show that any bounded measurable function on
R is the sum of two bounded measurable functions each of which is one-to-one.

Problem 36

Construct a topological space (X, 7) and a sequence of measurable functions
{fn} from [0,1] into X such that f(z) = nlingofn(x) exists Vo € [0,1] but f is
not measurable. [Here measurability is w.r.t. the Borel o— fields on [0,1] and
X].

Let fn(z)(t) = max{0,1 —n|z —¢|}. If E C [0,1] is non-Borel then V =
U{{f: f(t) > 1/2} : t € E} is open in X = [0, 1](>" with the product topology
and Iy, which is the pointwise limit of {f,}, is not measurable because the
inverse image of V' is precisely E.

Remark

If X is a metric space and {f,} is a sequence of measurable functions {f,}
from [0,1] into X such that f(z) = nlglgofn(m) exists Vz € [0,1] then f is
measurable. To see this let U be open in X and g(z) = d(z,U¢). Then g
is continuous and hence g o f,, is measurable for each n. Hence g o f is also
measurable. Now {z : g(f(z)) = 0}= {z : f(x) € U¢} and hence f~}(U) is a

Borel set in [0, 1].
Problem 37

Let H be a complex Hilbert space and T': H — H an isometry which is not
onto. Show that o(T) ={A € C: |A] <1}

The range of T is closed so there is a non-zero vector y in T(H)*. Let |\| < 1.
Then < Ty, x >=<y,Tx >= 0 Vz. Hence T*y = 0. We claim that )\ is an eigen

value of T* with eigen vector Z )\kay First note that the series Z )\kay is
k=0 k=0
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convergent because |A| |7 < |A| < 1. Also Z ANFTky = 0 because the sequence
k=0
{T*y} is orthogonal: < T*y, Tiy >=< y, (T*)*TVy >=< y,T9 *y >= 0 if
o0 oo o

j > k. Since T*(Z /\kay) =T*y + Zx\ka_ly = /\ZAkay we conclude
k=0 k=1 k=0

that A is an eigen value of 7" and hence that A € o(T"). We have proved that

{A:|A\| <1} C o(T) which completes the proof since o(T) C {\: |A| < 1}.

Problem 38

Let H be a Hilbert space and P,(Q be projections on M and N respec-
tively. Prove that {(PQ)"x} converges for every x. What can you say about
the operator lim (PQ)"?

n—oo

We show that the (pointwise) limit is the projection on M N N. Let A, =
(QP)"/? or P(QP)("~1/2 according as n is even or odd.

If n 4+ m is odd then < Az, Ay >=< Apimz,x > . Similarly we see that
if n and m are even then < Az, A,z >=< A,ym_1z,z > and if if n and
m are odd then < Az, Apx >=< z, Apym-12 > .. Now ||Az — Anac||2 =<
Apz, Apx > + < Apz, Apx > —2Re < Az, Apx > . Using above identities
we see that if we can show that < As;_jz,2 > has a limit in R as j — oo we
can conclude that {A,x} is Cauchy.In particular we see that hm Agnm exists

which means Az = lim (QP)"x exists. Now PAsy,, = Aoy and QAgn 1A,

n—oo

so we get PA = A = QA. Any point in the range of A is a fixed point for both
P and @ and hence range(4) C NN M. But on N N M it is obviuous that
Az = x and hence NN M C range(A). Thus range(A) = NN M and A =1 on
range(A). Next we observe that PA = A and QA = A. These follow from the
realtions PAs, = Ag,11 and QAz,—1 = Agy,. Thus, A* = A*P and A* = A*Q
which means A* vanishes on the ranges of (I — P) and (I — Q) which are M+
and N*t. Hence A* =0 on M+ + N+ = (NN M)*. From the fact that A = I
on N N M it follows that A* = I on N N M. We have proved that A* is the
projection on N N M. It follows that A* is self-adjoint and this implies that A
is also self-adjoint. Since A2 = A we conclude that A is the projection onti its
range which is N N M.

It remains to show that < As;_iz, 2 > has a limit (in R) as j — co. We prove
that the sequence {< Agj_1z,z >} is actually non-negative and decreasing.
Since < Agj_1x,x >=< Ajx, Ajx > it follows that the sequence is non-negative.
Next we note that Aj;1 = PA; if jisevenand Aj41 = QA; if j is odd. It follows
that |\Aj+1xH2 < ||AJ~:13||2 which proves that the sequence {< Agj_1z,2 >} is
decreasing.

We have proved that (QP)" = As, — A, the projection on N N M. By
symmetry it follows that (PQ)™ also converges to the projection on N N M.
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Remark: let X,Y be independent random variables and Z have finite second
moment. Let Zl = E(Z‘X),ZQ = E(Zl‘Y)77X2n = E(X2n71|Y)7X2n+1 =
EX3,|X),.... Then Z, — EZ in the mean. This follows immediately from
above result and the fact that if a random variable is measurable w.r.t. the
sigma filed genertaed by X as well as the sigma filed genertaed by Y then it is
independent of itself and hence a.s. constant.

Problem 39

Let M be a closed linear subspace of L'[0,1] such that M C U L?0,1].
p>1
Show that M C LP|0, 1] for some p > 1.

Since M C U {fES:/|f|p§N} andsince{fES:/mpSN} is
p>1,N>1
closed in M we can find (by Baire-Category Theorem) p > 1 and N € N such

that {f € S:/|f|p < N} contains an open ball B(fy,d) in S. It follows that if
feSthenfo—kgWe{feS:/|f|pgN}andfoe{feS:/|f|”§N}

SO%Hfle G{fGS:/|f\P§N}. Thus/|f\P<OOerS.

Problem 40
Prove or disprove: if kK € N and {p, } is a sequence of polynomials of degree
not exceeding k converging pointwise to 0 on [0, 1] then p,, — 0 uniformly.

True. Consider the statement: {p,} is a sequence of polynomials of degree
not exceeding k converging pointwise to 0 on [0, 6] for some ¢ > 0 then p,, — 0
uniformly.

We prove the validity of this statement by induction on k. For k = 1 the
k+1

proof is trivial. Assume that it holds for a certain k. Let p,(x) = Zan,jxj —
§=0

k+1
0 pointwise on [0,6]. Then a,o — 0 so Z an @’ — 0 Vo € [0,6]. Hence
k+1 =
Zamj(xj — 7)) — 0 Vx € [0,0]. This gives an1 + ana(x + 8) + anz(z? + 6 +
j=1
6 + ... + ap, (k1) (@F + 2716+ + 26871 +6%) = 0if 0 < 2 < 6. By induction
hypothesis this gives an k+1 — 0,an % + @n k410 = 0,...,an1 + an 20 + an7352 +
...—|—an’(k+1)(5k — 0. Clearly these imply that a,, ; — 0 for each j. This completes
the induction argument.

Remark
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There exist sequence of polynomials on C converging pointwise to a discon-
tinuous function. For example if {P,} is the sequence constructed in Example
8.15 (page 264) of "An Introduction to Classical Complex Analysis" by Robert
B. Burckel then Re P, (iz) — 0 for z € R\{0} and Re P, (iz) — 1 for z = 0. Let
pn(x) = Re P, (ix),0 < x < 1. Then {p, } converges pointwise to a discontinuous
function. Since the convergence is not uniform we can find ¢ > 0 and an increas-
ing sequence {n;} of positive integers such that sup{|pn, (x) — pn,,,(z)| > € for
each k. It follows that the sequence of polynomials {p,, — pn,,,} converges
to 0 pointwise, but not uniformly. Thus, the hypotheses that the degrees of
polynomials p,, are bounded cannot be omitted from Problem 40.

Problem 41

Let (X,d) be a metric space such that every decreasing sequence of closed
sets with diameters approaching 0 has non-empty intersection. Can we conclude
that (X, d) is complete?

Yes! Let {z,} be Cauchy. There is a subsequence {n;} of {1,2,...} such
that d(zp;, Tn,,,) < 2% Vj. Consider the closed balls C; with center x,; and
radius 5. If # € Cj1 then d(z,@,,,,) < & and d(z,,,2n,,,) < 5. Hence

d(z, ;) < 2% + 2% = 2%1 which means x € C;. By hypothesis there is a point
o0

x in ﬂ C;. Clearly, ,,; — x. Since {z,} is Cauchy this implies that z, — z.
j=1

Problem 42

Let f : [0,1] — R be continuous and non-decreasing. Show that there is a
sequence of polynomials {p,} such that p, T f uniformly on [0, 1] and each p,
is non-decreasing.

Extend f to R so that the extended f is uniformly continuous, non-
decreasing and bounded on R. Let g;(x) = \/%/f(x — y)e~ " dy where t > 0.

Then ¢ is non-decreasing and continuously differentiable. Also, g:(x) — f(x)

uniformly for 0 < z < 1 as ¢t — 0. We claim that for each ¢, there is a se-

quence of polynomials {p,} such that p,, — g; uniformly on [0, 1] and each p,

is non-decreasing. Let {g,} be a sequence of non-negative polynomials con-

verging to g; uniformly on [0, 1]. [To see that this is possible just approximare
y

Vg, by polynomials ¢, and take ¢, = ¢2]. Let p,(y) = g:(0) + /qn(s)ds.
0

Then p, — g uniformly on [0, 1] and each p,, is non-decreasing.. This proves

our claim. Finally we show that we can modify {p,} so that p,(z) < pp+1(x)

Vz, Vn. Applying the result just proved to f — QL in place of f we get a non-

decreasing polynomial &,, such that |§n () = (f(z) — 2%)} < 5z Vz, Vn. Then
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€n(2) < (@) = 55 + garz < J(@) = garr — gars < &npa(@) and [§,(2) — f(2)] <
2%—&—271%%:, vn.

Problem 43

Let f : [0,1] — R be continuous and one-to-one. Show that there is a
sequence of polynomials {p,} such that p,, — f uniformly on [0, 1] and each p,
is one-to-one.

f is strictly increasing and we find a striclty increasing sequence of strictly
increasing polynomials {¢,,} converging uniformly by the argument of Problem
42.

Problem 44
If P,@Q and PQ are projections on a Hilbert space and P # @ show that

IP—Q| =1

Since PQ is self adjoint we have PQ = QP. Note that (P — Q) =
P — @ and hence (P — Q)*" = P — Q for any positive integer n. It follows
that |[P— Q| < ||[P—Q|* which implies |P — Q| > 1 since P # Q. Now
|Pe—Qz|* = IP(I = Q)z — (I - P)Qz|* = ||P(I = Q)a|* + |1 — P)Qu|”
(because the ranges of P and (I— P) are orthogonal) and this gives || Pz — Qz|* <
IPI* (T = Q)al* + |11 = P|* [|Qx|* < (I — Q)=[* + Qx| = |||

Remark: we actually have (P — Q)™ = P — @ for any odd positive integer

n—1
n > 3. To see this note that (P — Q)" = Z [ ;L } PQ+ P+ (—1)"Q and that
j=1

0=(1—1)" i{ }+1+ 1)". Thus (P — Q)" = —[1+ (-1)"|PQ+ P +

(-H)"Q =P — Ql n is odd.
Problem 45

Let p be g be polynomials with real coefficients. Show that if max{p(z), ¢(z)}
is a polynomial then either p(z) < g(z) Va or g¢(z) < p(x) V. Show that the
same conclusion holds if min{p(z), ¢(z)} is a polynomial.

Suppose p and |p| are polynomials. If p has a real root xy then p(z) =
(x — x)*¢(x) for some polynomial ¢ with ¢(z¢) # 0 and some positive integer
k. Since ¢ does not change sign near z it follows that |z — :E0|k is infinitely

differentiable at . But |z — $0|k does not have a k —th derivative at xo. Thus
p does not have any real roots, so either p(z) > 0 Vx or p(z) < 0 Va. We can
now complete the proof using the identity |p — ¢| = 2max{p,q} — p —q.

Problem 46
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Find a necessary and sufficient condition on a sequence {b, } of real numbers
that E anb, converges whenever E a, converges.

N
The condition is Z |by, — bpt1| < oo. If this condition holds then Z anby, =

n=1
N

N
Z(sn—sn_l)bn = Z Sn(bp —bpt1)+snbys1 where so = 0 and s, = a1 +az+
n=1

n=1

..t an(n > 1). Since the series Z Sn(by, — byy1) is absolutely convergent, {s,}
n=1

is convergent and {b,,} = {b1 + (b — b1) + ... + (b, — by,—1)} is also convergent
we see that Z anb, converges.

Now suppose Z anby, converges whenever Z a, converges. First note that
{a,b}} and {a,b,} € I* whenever {a,} € U1 [if ¢, = |a,| if b, > 0 and 0
otherwise then Z b, converges by hypothesis and this implies {a,b;} € I'.

Similarly {a,b;} € I']. By a standard argument using Uniform Boundedness
Principle we get {b}} and {b,} € [*. Hence {b,} is bounded. We now con-
sider the space c of all convergent sequences with the supremum norm. Define

N
Ty : ¢ — C by Tn{sn} = an(bn — bpy1) + snbye1. This is a sequence of
n=1
continuous linear functionals on ¢ and we claim that ]\}im Tn{sn} exists for
—00

every sequence {s,} € c. To see this write a, for s, — sn,—1 (sp = 0). Then
N
Tn{sn} = Z anb,. The claim now follows from the fact that Z a, converges.

n=1

By Uniform Boundedness Principle there is a constant M € (0,00) such that

N
Z Sn(bp — bpt1) + snbnt1| < M VN and for all sequences {s,} with |s,| <1
n=1

N
V¥n. Since {b,} is bounded it follows that Z Sn(bn — bpt1)| < M + sup |by]| .
n=1
N
By an appropriate choice of {s1, s2, ..., Sy} we conclude that Z [br, — bpt1] <
n=1

M + sup |b,| VN.
Problem 47

Consider the colection of all polynomials on [0, 1] with the ordering p < ¢
if p(z) < q(z) Va. Let p and ¢ be any two polynomials. Show that one of the
following is true:

a) p(x) < gq(z) Vx or ¢(x) < p(z) Va

b) there is no smallest polynomial ¢ exceeding both p and ¢
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Let f(z) = max{p(x),q(x)}. Then f is continuous but it is not a polynomial.
[See Problem 45 above]. There is a sequence of polynomials {h,} decreasing
uniformly to f. [ See the last part of the solution to Problem 42 above]. If there
is a smallest polynomial ¢ exceeding both p and ¢ then ¢ < h, Vn and hence
o< f.But ¢ >pand ¢ > qso ¢ > f. Thus f = ¢ is a polynomial which is a
contradiction.

Problem 48
Show that if T" and S are commuting operators on a normed linear space then

p(T+5) < p(T) + p(S) where p(T') = limsup ||T”H1/n (the spectral radius of
T). Give examples of 2 x 2 matrices A and B such that p(A+ B) > p(A)+p(B).

n

Since [|(T + S)" "™ < Z < > |77 ||5™~7|| we only have to show that

7=0
n

limsup(z< ? >ajﬂnj)n < limsup(a;)t7 + lim sup(3; Y1/7. This is easy.
7=0

Let A = (1) 3 and B = 2 (1) . Then p(A) = p(B) = 2 and p(A+ B) =
5>24+2
Problem 49

Let f R — R be contlnuous integrable and of bounded variation. Show

that Z f(2mn) = Z f

n=—oo n=—oo

Let V (z) be the variation of f on (—o0,x]. Let g(z Z flz+2mn),x
R. We claim that g is well defined, continuous, of period_Q;T and of bounded
variation on [0,27]. Once this claim is established we can conclude that the

Fourier series of g converges to g at every point. In particular, Z f(2mn) =
oo 27 n=Tee
g(0) = Z g(n) and since g(k) = %/g(x)e—ilmdx
n=-—oo )
27 (n+1) -
Z 27r/f z+2mn)e ke dy = Z £ / (2)erde = L 3 f(k)
S n=Tee 2 n=-—o00

The mterchange of the sum and the integral here follows by uniform convergence

of the series (to be eastablished). Note that we are using the notation h in two
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senses: for an function h € L' (R), h(t) = / h(z)e~"*dx whereas for a periodic
“on

function on [0, 27] with period 27 it is 5= [ h(z)e~"**dz.

0

We now prove the claim. Note that for any interval [a,b] of legth 2,

o b+27mn
/ Z f(z+2mn)|dz = Z /|fa:—|—27rn|dm— Z / |f(z)|dz =

/ |f(z)|dx < oo. Hence g is well defined almost everywhere on R. Let z <

— 00

y < x4+ 2m. Then |f(y + 27n) — f(z +27n)| < V(y + 27n) — V(z 4+ 27n) <
V(z + 2w(n + 1)) — V(x 4+ 27n). The series Z V(z4+2r(n+1) - V(z+

n=—oo
27n)] is convergent. It follows easily from this that g is continuous on [z,z +
27| for any real number z. Thus ¢ is continuous on R. It remains only to
show that g is of bounded Variation on [0 2m]. If {t;}o<j<n is a partition of

N
[0,27] then Z|g(tj) (tj—1)| < Z Z f(tj +2mn) — f(tj—1 +2mn)| =
j=0 =0n=—00
Z Z |f(t; +2mn) — f(tj—1 +2mn)| < Z [V(2r(n+1)) —V(2mn)] < 0.
n=—oo j=0 n=-—oo
Problem 50

Let {f,} be an orthonormal basis of L?(]0, 27]). Show that Z / | fr(x)|dx =

n—=—oo

00.
There is a function g € L*([0,2n]) such that g(n) = 1 ¥n € N. Note
2

hat 3 [H00] = 30 < g0 > = e = 1 ¥n € N Now oo =
> =Y iy e
R
=Y Y fm)| = i > ambminm = 3 <
RN o= =
finfi >= Z <97fj*7];j>
=
<5 gl |+ 5, S ST ATANTANSI P SE T
2 = =
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Problem 51

Construct probability measures p,,,v,,n > 1 on [0, 1] such that / fdu,, —

fdv, — 0 for every continuous function f : [0,1] — R but p,([0,z]) —
vn([0,2]) - 0 for any z € [0,1).

Let [a1, b1], [az, ba], ... be the intervals [0, 1/2], [1/2, 1], [0,1/22], [1/22,1/2], [1/2,3/22], [3/22, 1], ...

. Let w,, = 0p, and v, = d,,,. If f:[0,1] — R is continuous then it is unifrmly
continuous and b,, — a,, — 0 so /fdun — /fdun = f(bn) — f(an) — 0. If

z € (0,1) then u,([0,z]) — v,([0,x]) takes the values 0 and —1 each for infi-
nitely many n. For = 0, u,,([0, 2]) — v, ([0, z]) take the values 1 and 0 each for
infintely many n. .

Problem 52

Let (92,3, P) be a probability space and X, X1, X3, ... be random variables on

it. Show that X, £ X if and only if Qo X1 % Qo X! for every probablility
measure @ on (£,S) which is equivalent to P (in the sense P << @ and
Q << P)

We first assume that X, X, Xo,.. are uniformly bounded. If X, I ox

and f : R — R is a bounded continuous function then /fd QoX,; ! —

/fd Qo X, 1) because /f( n FdP — /f —dP by Dominated Con-

vergence Theorem. Conversely suppose Q o X' % Q o X~ for every proba-

blility measure @ on (€2, ) which is equivalent to P. We claim that / XndP —

/XdP for any A € . Once this is proved we see that | X,||, — [ X2 and

A
< X,,Y >—>< X, Y > for any simple function Y. These facts imply that
| Xn — X||;, — 0 and hence X, L X. To prove the calim we assume that

P(A) > 0 and /Xnde— /XdP > e,k =1,2,.. for some ¢ > 0 and some

A
ny < na.... Let Q( ) = a (El)Pe(ﬁ)m(‘z)ijg?)A ). Then @ is equivalent to P so

—e/X dP—l—e/X dP — ( —e/XdP—I—e/XdP But/X dP—>/XdP

o(1— 26)/Xndp —(1- 26)/Xdp.
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For the general case we note that X, L Xifand only if tan; ! X, 2 tan—1 X

and /fd(QOX,jl) — /fd(Q o X,1) if and only if /fd(Q o(tan™t X,,)71) —
/fd(Q o(tan™! X)71).
Problem 53

Let A and B be any two proper subsets of R. Show that R?\(A x B) is
connected.

Suppose R2\(A x B) = (A° x R) U (R x B¢) and any two points if this set
can be joined by at most three line segments.

Cor: (Q x Q)¢ is connected in R2.

Remark: R? can be replaced by the product of arbitrary connected spaces.

Remark: let S be any countable subset of R%. Let A = {a € R: (a,b) € S
for some b € R}, B = {b € R: (a,b) € S for some a € R}. Then A and B are
countable subsets of R and hence they are proper subsets of R. Thus R?\ (A x B)
is connected. Now note that R?\(A x B) C R?\S. Also R?\(A x B) is dense in
R? because no open ball can be contained in the countable set A x B. It follows
that R?\S is connected.

Thus, the complement of any countable set in R? is connected.

Problem 54
Find all maps f : R — R such that f is both additive and multiplicative.

We have f(1) = [f(1)]? so f(1) = 0 or f(1) = 1. In the second case additivity
gives f(2) = 2 ¥Yn > 1 VYm € Z. Now f(z) = [f(v/2)]* > 0 Vz > 0 and
flz+y) = f(z)+ f(y) > f(y) if x > 0. Thus f is increasing on [0, 00). If it is
constant on some open interval it is easily seen to be a constant (which must be
1) everwhere. Otherwise it is strictly increasing. We claim that f(x) = x Vz. Let
z>0and r,s € QN (0,00) with r < & < s. Then r = f(r) < f(z) < f(s) = s.
Letting r T z and s | = we get f(z) = z. Of course, f(—z) = —f(x) so f(zx) ==z
Vo € R. Now let f(1) = 0. In this case we get f(r) = 0 for all rational . But
f is strictly increasing unless it is a constant. Thus f(z) = 0 Vz. Conclusion:
fx)=xzVzeRor f(x) =0Vx e R.

Problem 55

What happens if R is replaced by C in Problem 54 and f is assumed to be
continuous?

We have f(rz) = rf(z) for all rational r. Again, f(1) =0 or 1. If f(1)

=0
then f(r) = 0 for all r rational, hence for all r real. Note that [f(i)]? = f(—1) =
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—f(1) =0so f(i) = 0. We now get f(a+1ib) = f(a)+ f(¢)f(b) =0. Thus f =0
in this case. Let f(1) = 1. Then [f(i)]> = f(=1) = —f(1) = =1 so f(i) =i
or f(i) = —i. In the first case f(a +ib) = f(a) + f(i)f(b) = a + ib and in the
second case f(a+1ib) = f(a)+ f(i)f(b) = a—ib. Conclusion: f=0or f(z) =z

Vz or f(2) =z Vz.

Remark: continuity is essential. There exist additive, multiplicative, one-
to-one dis-continuous functions on C!.

Remark: if f : R — R is additive and non-measurable then g = ¢/ : R — S?
satisfies g(x +y) = g(x)g(y) and g is not measurable. Indeed, if A is a Borel set
in S* then B = {c e C: e € A} is Borel in C and g~1(A) = f~1(B).

Problem 56

Let T be a compact operator on a Hilbert space H with orthonormal basis
{e1, €2, ...}. Show that ||Te,| — 0.

{Te,} is relatively compact. Any limit point y of this sequence satisfies the
property < y,e; >= lim < Tey,,,e; >= lim < e,,,T"e; >= 0 Vj for some
N — 00 l—o0 l—o0

y .

Problem 57

Show that there is a sequence of continuous functions from R to R converging
pointwise which does not converge uniformly on any open interval in R. Show
that if a sequence of analytic functions on a region (2 in C converges pointwise
then there is a non-empty open subset D of  such that the a subsequence
converges uniformly on compact subsets of D.

Let f(%) = % if pg € Z,qg > 1 and (p,q) = 1, f(z) = 0 if z is irrational.

We claim that f is upper semi-continuous. If @ > 0 then {z : f(z) < a} is
the complement of the (discrete) set of rationals g with p,q € Z,1 < q < é
and (p,q) = 1 and hence it is open. This implies that there is a sequence
of continuous functions converging pointwise to f : sup{f(y) —n|z —y|},n =
1,2, ... is one such sequence. Since f is not continuous at rationals the sequence
cannot converge uniformly to f on any open interval.

If fo(2) — f(2) Vz € Q where each f, is analytic on € then Q = U{z €
N

Q :|fn(2)] < N} and Baire Category Theorem implies that {f,} is uniformly
bounded on some open ball B contained in . The sequence { f,} is normal in

B and hence it has a subsequence converging uniformly on compact subsets of
B.

Problem 58
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o0
Let p be a finite positive measure on (1,00) and f(y /cos zy)dp(z
1

Show that f has at least one zero on [0, 7).

Consider // cos(zy)du(x) sin ydy. By Fubini’s Theorem this is // sin y cos(zy)dydu(x) =

// sin(y(14x))+sin(y(1—x))]dydp(z :%/ [ colq:g(cl+r)+1 colwg(cl T)]du(x)
1

00
— %/ 1+cosrrz 1+cos7rm /1+c057rx .TJ < 0. It fOHOWS that
1

1+x 11—z 1—x2

1
ﬂ"

/f(y) sin ydy < 0. If f has no zero in [0, 7] then it does not change sign and since

0

f(0) > 0 it has to be positive throughout the interval which forces / f(y) sinydy
to be positive.
Problem 59

Consider the following sets of 3 x 3 real matrices:

a) {A:det(A) =0}

b) {A: A is symmetric}

c) {A: A" =0 for some n € N}

Treating a 3 x 3 real matrix as an element of RY show that above sets of
Lebesgue measure 0.

The set in b) is a proper linear subspace of R and hence it has measure
0. The set in ¢) is comtained in the one in a). To show that the set in a) has
measure 0 expand the determinant using the first row and use Fubuni’s theorem.
If the 2 x 2 obtained by deleting the first row and first column is non-zero then,
for fixed values of a;; with (¢, ) # (1,1) there is only one point in our set and
az2  G23
az2  as3
0 (again by Fubini’s Theorem) unless all the entries are 0. As longas A is not
the zero amtrix there is a 2 x 2 sub-matrix for which Fubuni’s Theorem can be
applied.

so it has measure 0. The matrices A with det ) = 0 have measure

Problem 60

Let {f,} be an orthonormal set in L?([0,1]) and A = {z : lim f,(z) exists}
and let f(z) = lim f,(z) for z € A. Show that f =0 a.e. on A.
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Let ¢ > 0. There is a set Ay C A such that f,, — f uniformly on Ay
and m(A\Ag) < % Now /IEIAkfn — 0 as n — oo for each k and each

measurable set E. This implies /IEIAkf = 0 for each k. [Note that /|f\ <
A

liminf/ Ifn] < liminf(/ | Ful$)Y/2/m(A) < 1 so f is integrable on A]. It now
A
folloes that /IEIAf = 0 for each measurable set F, so f =0 a.e.

Problem 61

Let T : I — R be a linear map such that for any = = {x,,} € [, T'(z) =
lim x,,; for some subsequence {n;} of {1,2,...}. Show that T" is continuous and
multiplicative.

Say © < y if z,, <y, for each n. Write 0 for {0,0,...}, 1 for {1,1,...}, zy for
{znyn}. We have T'(1) =1 and T'(z) > 0if > 0 so — ||z < T(z) < [|z]
and T is continuous. We can approximate any = € [*° be a sequence whose
components take only finite number of values. [Simple function approximation
of bounded measurable functions]. Any x whose components take only finite
number of values is a linear combination of sequence whose components take
only the values 0 and 1. Hence it suffices to show that T'(xy) = T'(x)T(y) when
x and y are 0 — 1 sequences. If Tx = 0 or Ty = 0 then T'(zy) = 0 because
ry < x and zy < y. Suppose Tx =1 and Ty = 1. Then (x —y)? is alsoa 0 — 1
valued sequence and T'(z —y)? = Tz + Ty? — 2T (zy) = Tw + Ty — 2T (xy) = 2
if T(xy) = 0. This is a contradiction and hence T'(zy) = 1.

Problem 62

n
Let c1,ca, ..., ¢, be distinct complex numbers. Show that Z H |

Cj—Ck
k=1 j+£k
for all ¢ € C.

The left side is a polynomial of degree (n — 1) which has the vale 1 at each
of the points c1, ca, ..., Cp.

Problem 63

Compute lim sup |a™ — b"\l/ " for any two complex numbers a and b.

The radius of convergence of Z(a" —b™)z" is the maximum of the radii of

n=0

o0 o0
convergence of Z a™z" and Z b"z" and hence the answer is max{|a|,|b|}.

n=0 n=0
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Problem 64
Prove the identity [z] + [z +1/n]+ ...+ [z + 2] = [na] for all z € R,n € N.

Let f(z) = [z]+[z+1/n]+...+[z+ 2] — [nz]. Note that f(z+1/n) = f(z)
Vz. On [0,1/n) we have f(z) =04+0+...40—-0=0.

Problem 65

If f:]0,1] — R satisfies |f(z) — f(y)| < Clz —y| Vz,y prove that given
€ > 0 there is a polynomial p such that |p(z) —p(y)| < Clz —y| Vz,y and
[f(2) = p(2)| < € Va.

f is absolutely continuous, so f’ exists a.e. and f’ is integrable. Further
|f'(x)] < C ae.. There is a continuous function g such that |g(z)| < ¢ Vz

|f'(z) — g(z)| < e. There is a polynomial g such that |¢(x) — g(z)| < €

x

Vo and |g(z)| < C Va. Let p(x) = f(0) + /q(t)dt. Then p is a polynomial,

0
T

p(z) = p(y)| < Clz —y| Vo and [f(z) — p(z)| = |{f(0) /f’ )dt} —{f(0) + /Q(t)dt} <

0
1 1

/\f’(t)—q(t)|dt<e+/|f’(t)—g(t)|dt<2e V.

0 0

Problem 66

™

If f:]0,7] — R is continuous and /f(a:) sin xdx = /f(m) cos zdx = 0 show

0
that f has at least two zeros in [0, 7].

Since sinz > 0 on [0, 7] we may suppose that f takes both positive and
negatlve values and hence has at least one zero. Suppose it has only one zero a.

Then /f )sin(z—a)dx = 0. Hence /f(w) sin(z—a) dx—l—/f x)sin(x—a)dx =

0
0. Slnce sin(z —a) < 0 on [0,a] and > 0 on [a, 7] and f does not change sign
in either of these intervals it has to have the same constant sign in these two
intervals for above equation to hold. this is a contradiction since f takes both
positive and negative values.

Problem 67
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If f:R — R is continuous and non-increasing show that it has a unique
fixed point. Use this to show that there is no continuous function f: R — R
such that f(f(z)) = —x Vz € R.

Let f be non-increasing. If z < y are fixed points then z = f(z) > f(y) =
y > x, a contradiction. If there are no fixed points then either f(z) > x Vz or
f(z) < x Va. In the first case f(zr) — oo as & — oo. However 2 > 1 implies
1<z < f(z) < f(1) which leads to a contradiction by letting © — oo. Similarly
in the second case f(z) — —o0 as  — —oo and z < 1 implies f(1) < f(z), a
contradiction. Hence f has a unique fixed point.

Now let f be a continuous function : R — R such that f(f(z)) = —x Vo € R.
We first observe that f is one-to-one. Indeed, f(z) = f(y) = —z = f(f(z)) =
f(f(y)) = —y. Thus f is strictly monotonic on R. If it is strictly increasing
then so is f o f but this contradicts the fact that f(f(x)) = —x Va. Hence f is
strictly decreasing and the first part shows that it has a unique fixed point a.
But —a = f(f(a)) = a so a = 0. It follows that f(z)—x does not change sign in
(0,00) as well as in (—o00,0). Since f(0) = 0 and f is strictly decreasing we see
that f(z) < 0 for > 0 and f(x) > 0 for z < 0. Now f(1) < 0so f(f(1)) >0
which leads to the contradiction —1 > 0.

Remarks: for any n the only continuous function f on R whose n—th iterate
f(n) is the identity function is the identity function itself. The only continuous
function f on R such that fi,)(z) = —2 Va is —x if n is odd and there is no
such function if n is even.

Problem 68

If f:[0,1] — R is continuous show that %Z(—l)ﬂf(%) —0asn— 0.
j=1

This follows by writing the sum in terms of f (%) —f (%) and using uniform
continuity.

Problem 69

If n is a positive integer find the precise number of real roots of the equation
n
k

T
R
k=0

k

If n is even then e™* < Z (_,f!) . This shows that the given polynomial has

k=0

n
k
no roots in (—o0,0) in this case. Of course, Z ot > 1if 2 > 0 so there are
k=0
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n
. k
no real roots for n even. Now let n be odd. Since E 71 — 00 as x — oo and
k=0

n n
Z %}T — —00 as ¢ — —oo it follows that Z %l: = (0 for some z. If there are
k=0

k=0
n

two real roots then the derivative of Z ‘”k—l: must vanish at some point, but that

k=0
is a contradiction to the fact that the given polynomial has no real roots for n

even.

Problem 70 (universal power series)

" (with no constant term) such that

oo
Show that there is a power series Z Cn®
k=1
for any continuous function f : [0,1] — C with f(0) = 0 there is a subsequence
{sn, } of the sequence of partial sums of this series converging uniformly to f

on [0,1].

Remark: an arbitrary continuous function cannot expressed in the form
[o ]

ch:v" with the series converging pointwise. Such a representation would
k=0
force f to be the restriction to [0, 1) of an analytic function on {z : |z| < 1}.

Let X be the space of all continuous functions f : [0,1] — C with f(0) = 0.
Give X the supremum metric. Then, for any positive integer k£ polynomials of

the type Z amx®™ (where n > 1,a}s € C) are dense in X. (It is an easy conse-

m=1
n

quence of Stone-Weierrstrass Theorem that polynomials of the type Z Am ™

m=0

are dense in C[0,1]. If f € C[0,1] and f(0) = 0 then we can omit the constant
term). Now let {f,} be a countable dense subset of X. Let p; be a polynomial
without cosntant term such that || f; —p1|| < 3. (|||l is the supremum norm).
Let di = deg(p1) and ds be an integer > 1+ d;. Let py be a polynomial without
cosntant term such that | f2(z) — p1(x) — p2(22)| < 35 V. By induction we get
polynomials pq, ps, ... and an increasing sequence of integers dq, ds, ,,, such that
|fn (z) = p1(x) — p2(2™2) — ... = pp(x™)| < 3= VaVn. The required power series
is p1 (@) + p2(2®) +ps(2%) + ...

Problem 71

Show that / (82227 cos(2zy)de = 0if |y| > 2n. Also show that the integral

— 00

is > 0 for all other values of y.
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Note that /1[71,1] (t)e''=dt = 2822 for  # 0. (The equation holds for

— 0o

x = 0 also if we interpret Sl% as 1 when = 0). Let f be the n—fold con-

volution of Ij_; 1. Then /f(t)e“‘”dt = 27(s2Z)n By the inversion formula

— 00
oo

/(Stht)”eimdt = (2m)27"f(z). Clearly, f(z) > 0if |z| < n and f(z) = 0 if

— 00
|z] > n.

Problem 72

Let f € C[0,1] and f(0) = 0. Show that there is a sequence of polynomials
kn

pn(x) = Zak’nxk converging pointwise to f on [0, 1], uniformly on [4,1] Vé €
k=1
(0,1), such that ag, — 0 as n — oo for every k € N.

kn
Let [f(z)] < L for 0 < = < ¢,. Let gu(z) = Zbk’na?k be such that

k=1
kn
% - Z bk:,n:pk
k=0

Problem 73

< Lfort, <z <1 Let py(z) = 2"qn(z).

1 1
/fo(z)dz /fz(m)dx
0 0

1 < 1

/mf(:v)dz /f(:c)dz
0 0
z z

We have /(33 — ) f2(y)dy > f(a:)/(x — y)f(y)dy. This shows that the

0 0
T T

If f:(0,1) — (0,00) is decreasing show that

x

derivative of the fumction ( / uF2()dy)( / F(w)dy) — ( / P (w)dy)( / yf(y)dy) is
0 0

0 0
< 0. Hence the value of this function at x = 1 does not exceed its value at 0.

Problem 74
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If f and g are continuous functions on (0,1) and g(z) > 0 Vz show that
1

/:c"f(a:)da:
0

zng(x)dz

1 1-

/z”f(m)dm /r

We have 2 = (1)7 !
0

lim exists.

n—oo

o

2" f(z)dz

< (1—5)"al+(f(1)+e>T%+1

zg(x)de zg(x)dz+

S—_

zng(z)dz (g(1)—e) /m"dm—(l—é)”ﬁ
1-06

|£(2)] da and § == / ()| dz. Us-

1
/ " f(x)dx
O

zg(x)dz

1

\;\H e‘q\H

for § = &(e) sufficiently small, where o =

ing the fact that (n+1)(1—J)™ — 0 as n — oo we conclude that lim sup —

o\

(a
(1'

1
Jerrom
fO

z™g(x)dx

%. A similar argument shows that limin

[~

>

Q
~|

o\

Problem 75

Say that two functions f,g : R — R are similar if there is a bijection ¢ :
R — R such that f = ¢! 0 g o ¢. Prove that 2" and z™ are similar if n = m*
for some k (or n = mF for some k). Are 2 and 2 + 1 similar? Prove that z"
and ™ are similar if n and m are both odd and greater then 1. Prove that sin
and cos are not similar.

First part: define ¢(x) to be e18@) if x> 0, —e(e@)” if » < 0,0 if 2 = 0.
Second part is easy: if there is a bijection ¢ such that ¢(z2) = [¢p(z)]? + 1
then ¢(t) > 1Vt > 0. But [p(—2z)]2 = ¢*(x) so ¢(—z) = +¢(z). It follows
that |¢(t)] > 1 for every real number ¢ which implies that ¢ is not onto R.
Thus 22 and 22 + 1 are not similar. For the third part we claim that there is
a bijection h on R such that h(z + logn) = logm + h(x). For this we take any
bijection h : (0,1logn] — (0,logm| and define h(z + (logn)j) = h(z) + (logm)j
for j =1,2,... to get a bijection h of (0,00). Defining h(0) to be 0 and defining
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h on (—o0,0) in a similar fashion we get the desired bijection h. We now define
o(z) = eM1982) (1 > 0), —eM1°82) (2 < 0) and $(0) = 0. Then ¢ is a bijection of
R and ¢(nz) = mo(x) Vo. Finally, let f(z) = e?18%) (z > 0), —e?(°8%) (1 < 0)
and f(0) = 0. Then f is also a bijection and f(2™) = [f(z)]™ which proves that
2™ and ™ are similar. We now prove that sin and cos are not similar. Suppose
¢ is a bijection such that ¢(cos(z)) = sin(¢(z)). Then ¢([—1,1]) = [-1, 1]. Since
cosz = ¢ '(sin(¢(z))) and the right side is 1 — 1 on [—1, 1] it follows that cos
is 1 —1 on [—1, 1] which contradicts the fact that cos is even.

Problem 76

Show that there is a sequence of polynomials converging pointwise, but not
uniformly, to a continuous function on [0, 1] .

2" — 2", Note that (1-4Hr—1- %)"2 — e. [ For the same question on
R we can take p,(z) = £].

Problem 77

a) Prove or disprove: if f : R — R is a function such that {(z,y) : y # f(z)}
is open then f is continuous.

b) Prove or disprove: if f : R — R is a function such that {(z,y) : y > f(z)}
and {(z,y) : y < f(x)}are open then f is continuous.

First statement is false and f(z) = 1,2 # 0, f(0) = 0 is a counterexample.
For the second part we consider {(z,y) : y > f(x)} N{(z,y) : y < a)} and
project this to R to see that {x : f(x) < a} is open for each a € R. Similarly,
the projection of {(z,y) 1y < f(z)} N {(z,y) : y > a)}, which is {z : f(x) > a},
must be open. It follows that f~1(U) is open for every open interval U, hence
for every open set U.

Remark: the answer to a) changes if we assume that f is bounded. It also
changes if the graph is assumed to be connected. [cf. Gelbaum, Problems in
Analysis. See also problem 101 below].

Problem 78

Let (X, d) be a metric space. Show that X is separable if and only if there
is an equivalent metric on it which makes it totally bounded.

Let X be separable. Let {z,} be a countable dense set. The map f: X —

[0, 1] defined by f(x) = (li(lf(fl)l), li(dm(fil) ,...) is a homeomorphism of X into

[0,1]N. Define a new metric D on X by D(x,y) = do(f(2), f(y)) where the

metric dy on [0,1]N is defined by do({a,},{b,}) = %%ﬂ Since the

k=1
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range of f is relatively compact, it is totally bounded. Hence, (X, D) is totally
bounded. D is equivalent to d because f is a homeomorphism.

The converse part is fairly straightforward: cover X by a finite number of
balls of radius n for n = 1,2, ... and verify that the centers of these balls form a
countable dense set.

Remark: it is clear from above proof that the two equivalent conditions
are also equivalent to the existence of a compact metric space Y such that
X is homeomorphic to a subset of Y.[ In other words, X has a metrizable
compactification].

Problem 79

Let f : R — R be additive. Show that the following statements are equiva-
lent:

a) f is continuous

b) f~1{0} is closed

¢) f is bounded on some open interval containing 0

d) f(U) is not dense in R for some open set U containing 0

e) f is Lebesgue measurable

a) implies b) is obvious. Let b) hold and suppose c) does not hold. Then

there is a sequence {t,} — 0 such that |f(¢,)| — 0. Fix y € R with f(y) #0
and consider the numbers y — 71 ty)) t,. Since this sequence converges to y we get

f(y) =0 (by b)) which is a contradiction. ¢) implies d) is obvious. Now we prove
(the interesting part) that d) implies ¢). If c) is false there is a sequence {t,} — 0
such that |f(t,)] — oo. Let s, = f(t,). Since f(—x) = —f(x) we may suppose
S$p — +oo. If £ > 0 and € > 0 is sufficiently small then, for n sufficiently large,

the length = — = of the interval (Tjje, —n-) exceeds 1 and hence it contains

an integer k. Thus, s, < k(z +¢€) and k(x — €) < sp,. This gives ‘% — x’ <e.

Hence, the interval (z — €,z + €) contains f(%*) which belongs to f(—d,6) if n
is sufficiently large. We have proved that f(—d,d) intersects every open interval
contained in (0, 00) and hence it is dense in (0, 00). The fact that f(—z) = — f(x)
now shows that the image of every interval around 0 is dense in R. We have
now proved a) = b) = ¢) = d) = ¢). ¢) = a) is elementary: if |f(z)] < M for
|z| < & then |f(y) — f(2)] < € if |y — 2| < 6/k and k is so large that 4& < e.
Finally we prove e) implies ¢). [Of course, ¢) implies a) and a) implies e)].
If N is sufficiently large then E = {z : |f(z)] < N} has positive Lebesgue
measure. Hence, there exists § > 0 such that (—9,0) C {z —y : |f(z)| < N and
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|f(y)] < N}. It follows, by additivity, that (—d,d) C {z : |f(z)| < 2N}. Hence
¢) holds.

Problem 80

Let (X, d) be a metric space. Consider the following properties of X :

a) Every real continuous function on X is bounded

b) Every real continuous bounded function on X attains its supremum

¢) Every real continuous function on X is uniformly continuous

d) The image of every real continuous function on X is connected

e) d(A, B) > 0 whenever A and B are disjoint closed sets in X

Do any of the first the conditions a),b),c),e) imply that X is compact? Does
d) imply that X is connected?

The answers are all YES except for ¢) and e). N is a counter-example for ¢)
and e). b) requires a form of
’s Theorem where the range is an open interval in R.See problem 217 below.

Problem 81

a) Suppose f : R — R has a left limit f(z—) at every point and suppose
f(z—) is continuous at a. Does it follow that f is continuous at a? What if
flz=) — f(a) asx — a?

b) Suppose f : R — R is continuous and has a left derivative f’(x—) at every
point. Suppose f’(z—) is continuous at a. Show that f is differentiable at a.

If f(z) =2 Vx # 0and f(0) =1 then f(x—) = z Vz and f is not continuous.
Suppose f(z—) — f(a) as x — a. Then given ¢ > 0 there is a § > 0 such
that f(a) —e < f(z—) < f(a) + € for a —0 < z < a+ . We claim that
fla) —e < f(z) < f(a)+€efor a— & < x < a+ §. This would complete the
proof. Suppose f(xzg) < y < f(a) — e with a —§ < 29 < a + 6. Consider
u = inf{z € (a —d,a+0) : f(x) > y}. Since f(z) < y for z < u we have
f(u—) <y < f(a) — € which is a contradiction. This proves that xy does not
exist which means f(a) — € < f(z) for a —§ < = < a + 4. Similarly we get
fl@) < fla)+efora—d<z<a+d.

For the proof of b) we proceed in a similar way: let f'(a—) —e < f/(z—) <
flla=)+efora—d <z <a+dand f(xo—ho)— f(xo) < yho < (f(a) —€)h we
consider hy = inf{h : f(xo—h)—f(xo) > yh} to get f'((xo+h1)—) < (f(a)—¢€)h,
a contradiction.

Problem 82

Let f : R — R be a function which has a local minimum at each point. Show
that its range is atmost countable. Construct an example of such a function
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which is increasing and which has the properties lim f(z) = oo, lim f(z) =
r—0o0 r——00

—oo. If f has a local minimum at each point and if f is also continuous show
that it is a constant.

Let A, = {z : f(y) > f(z) Yy € (z — 2,z + 1)}. Then f(R Uf
and each f(A,) is at most countable: note that f(A Uf AN k k]) and

[—k, k] can be covered by a finite number of intervals of length s ifx,y € Ay
and |z — y| < L then f(z) > f(y) and f(y) > f(x), so f(x) = [(y). Thus [ is
constant in each of these sub-intervals, so f(A, N[k, k]) is finite. This proves
the first part. If f(x) = a, for —n < x < n +1 with a, < ap41(n € Z) then f
has a local minimum at each point. This answers the second part. Suppose f
has a local minimum at each point and if f is also continuous. Since the range
of f is a countable connected set it must be a singleton.

Problem 83

Find all functions f : R — R such that f(f(z)) = f(z) V. Find all contin-
uous functions f : R — R such that f(f(x)) = f(z) Va. If f is a non-constant
convex function f : R — R such that f(f(z)) = f(x) Va show that it is identity
on [a, 00) for some real number a and give an example of such a function. Prove

that there is no differentiable function f : R — R other then the identity such
that f(f(z)) = f(z) Va.

Let ACR, f: A° — A any function and f(z) =z Vo € A. Then f(f(z)) =
f(z) VYa. Given any f : R — R such that f(f(z)) = f(z) Va take A to be
f(R). This solves the first part. If f is continuous then A is an interval and

f(z) =x Vo € A. f: (A)° — A can be arbitrary. This answers the second
part. If f is convex the A is an interval of positive length. If A is bounded, say,
with end points ¢ and b then, for x > b we have f(b) < Af(a) + (1 — A)f(z)
where X is defined by b = Aa + (1 — N)a. Thus, f(z) > {OZAN@ — bda
(where we have used the fact that f is identity on [a, b]). Thus f does not take
values in [a, b] and we have the desired contradiction. A similar argument shows
that A cannot be bounded above. Thus f is identity on [a,00) for some real
number a. Examples of such function are ™ and |x|. Finally if f : R — R is
differentiable and satisfies f(f(x)) = f(z) Vx the the range A has to be R. To
see this note that A is an interval and if it has finite supremum b then f/(b) =1
which forces f to take values exceeding b at points close to b and greater than b.

This contradicts the fact that f takes values in [a,b]. A similar argument shows
that A cannot be bounded below either. Thus A = R and f(z) = z V.

Problem 84

Let (X1,71) and (X2, 73) be topological spaces and f : X — Y. Prove or
disprove the following:
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a) if (f71(A))? # 0 whenever A° # () then f is continuous

b) if X; = X5 = X (say) and a set A is sense in X w.r.t. 7y if and only if it
is dense in X w.r.t. 79 then 71 = 7.

c) if (f(A))° # () whenever A° # () then f is an open map

All the three statements are false. Let 71 be the usual topology on R and
To be the class of all possible unions of intervals of one of the following types:
[0,1],[0,a) with 0 < a < 1, (b, 1] with 0 < b < 1, (a,b) with —c0 < a < b < cc.

Note that 75 is the smallest topology containing all the open sets in the
usual tolpology and the interval [0, 1].

Let f: (R,71) — (R, 72) be the identity map. Then f is not continuous
because f~1([0,1]) is not open. However, if A has nonempty interior under 7o
then it contains one of the intervals mentioned above and so it has non-empty
interior in 71. This completes a). b) is fasle by the same example. For c) we
just have to look at the identity map (R, 72) — (R, 7).

Problem 85

Does there exist a function f : R — R such that the smallest topology that
makes f continuous (w.r.t the usual topology on the range) is the power set of
R?

Answer: no. If so then for each x there is an open set U, such that {z} =

Y U,). Let U = U U,. We can write U as a countable union, say U U, .
zER neN

If x € R then f(z) € U (because z € f~*(U,) C f~*(U). Thus, f(z) € U,,

for some n. Hence z € f~Y(U,,) = {z,}. We have proved that R C {z1, 2o, ...}

which is a contradiction.

Problem 86

Prove that a function f from one metric space to another is uniformly con-
tinuous if and only if d(A, B) = 0 implies d(f(A), f(B)) = 0.

Solution by Suresh Nayak when the domain and range are both equal to R :

It is easy to see that f is continuous: if not 3z, — = with |f(x,) — f(x)| >
0 > 0 and we get a contradiction by taking A = {z, :n>1},B={z}. If fis
not uniformly continuous then we can find {z,}, {y,} such that |z, —y,| < %
and |f(z,) — f(yn)| = & > 0 Vn. We may suppose that x,, < y, Vn. Claim:
{(#p,yn) : n > 1} is unbounded in R2. If the claim is false there would be
integers n; < ng < ... such that {(zn,,yn,)} converges to some point (z,y).
Since |z, — yn| < 1 we get = y. But then f(zn,) — f(2), f(yn,) — f(z) and
|f(zn,,) — f(yn,)| > 0 leading to a contradiction. The claim is proved and, by
going to a subsequence we may suppose |Z,11| > |x,| + 1. [ Note that since
|Zn — yn| < = both {z,} and {y,} are unbounded]. Let A = {z,, : n > 1} and
B = {y, : n > 1}. Suppose f(B) is bounded. we may suppose that f(y,) — A
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(say). Thus the diameter of the set f({y, : n > k}) is less than §/2 if k is
large enough. Since the distance between {z, : n > k} and {y, : n > k} is 0
the distance between f({z, : n > k}) and f({y, : n > k}) is also 0. However
() — Flm)l 2 650 [£(2n) — Fu)l 2 6— £ uy) — F(a)| > 6/2 for all n, j >
k, a contradiction. We have proved that f(B) is unbounded. We may assume
now that f(y,) is monotonic with |f(yn+1) — f(yn)| > d. Since f is continuous
and |f(zn) — f(yn)| = 6 we can find ¢, € [Z,,ys] such that |f(t,) — f(yn)| =
5/2. Now |£(ta) — Fgm)l > 1f(um) — Fm)| — f(tn) — Fgn)] > 8 — 5/2 = /2
whenever n # m. Thus the distance between { f(¢,) : n > 1} and {f(y,,) : n > 1}
is positive whereas the distance between {t,, : n > 1} and {y, : n > 1} is 0.

Solution (general case) by Kannappan (student of B. Math III):
if f is not uniformly continuous then there exists € > 0 such that for every § >
0 we can find points x and y with d(z,y) < 0 but d(f(z), f(y)) > 4e. Let §;= 1.

Let d(x1,y1) < d but d(f(z1), f(y1)) > 4e. Inductively define &, Ty, yn(n > 1)
satisfying the conditions 6, | 0,d(xn, yn) < Opn, d(f(zn), f(yn)) > 4e as follows:
having found &, z;,y;(j < n)let 0 < 8,11 < min{%,d(N(2,), F(2,)), d(N (yn), F(yn))}
where N(z) = {z : d(f(x), f(2)) < €} and F(z) = {z : d(f(x), f(2)) > 2¢} for
any z. Note that z € N(z). If F(z) = 0 then d(f(z), f(2)) < 2¢ for all z and
1€ < d(f(m1), () < d(f(m1), () + d(f(y1), 2) < 2€ + 2€, a contradiction.
Hence F(z) and N(z) are both non-empty for any z. Also, d(N(z,), F(zy))
and d(N(yn), F(y,)) are both > ¢ > 0 : if u € F(z) and v € N(z) for some
z then d(f(u), f(v)) > d(f(u), f(2)) — d(f(v), f(2)) > 2¢ — € = e. Hence 6p41
is well defined. We can find x,,41,yn+1 such that d(z,41,Ynst1) < Op+1 and
d(f(xn+1), f(ynt1)) > 4e. This completes the construction of the sequences
{0n},{zn}, {yn}. We note that if A ={z,, : n > 1} and B = {y,, : n > 1} then
d(A, B) = 0. We get the desired contradiction by showing that d(f(A), f(B)) >
e. For this we have to show that d(f(zm), f(yn)) > € for all m and n. For m =n
we already know that d(f(z,), f(ym)) > 4e. We first prove the inequality for
m < n. Suppose, if possible, d(f(zm), f(yn)) < € (¥). Then d(zp,yn) < J, <
Omt1 < d(N(zp,), F(xm,)). Note that v, € N(z,,) because d(f(xm), f(yn)) < €.
If z,, € F(zy,) we would have d(z,,yn) < d(N(2m), F(zm)) < d(yn, ) a con-
tradiction. Thus z, ¢ F(z,,) which means d(f(x,), f(zm)) < 2¢. But then
de < d(f(xn), f(yn)) < d(f(zn), f(@m)) +d(f(zm), f(yn)) < 2e+e by (*). Now
let m > n. Once again assume that d(f(zm), f(yn)) < €. Then d(zm,ym) <
Om < Opt1 < d(N(yn), F(yn)). Also the assumption that d(f(xm), f(yn)) < €
implies that x,, € N(y,). Hence the previous inequality implies that y,, ¢
F(yn). This means d(f(ym), f(yn)) < 2¢. But then 4e < d(f(xm), f(ym)) <
d(f(xm), fyn)) + d(f(yn), f(Ym)) < € + 2¢. This contradiction completes the
proof.
[ See also Problem 214 below]

Problem 87

An additive subgroup of R is either dense or discrete. There are additive
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subgroups which are dense and of first category and there are subgroups second
category as well.

Let A be an additive subgroup of R. If there is a sequence {t,} C A such
that ¢, > 0 Vn and ¢, — 0 as n — oo then any interval (a,b) C (0,00)
has non-empty intersection with A. This is because the length of the interval
(%7 %) exceeds 1 if n is sufficiently large and hence it contains an integer
m. It follows that mt, € AN (a,b). This proves that A is dense in (0, 00).
Since —a € A Va € A it follows that A is dense in R. In the contrary case
let @« = inf(AN(0,00)). If & ¢ A then there is a sequence {a,} in A strictly
decresing to a. In tis case |a, — am| € (0,a) N A for some n and m. Since
this contradicts the definition of « it follows that « € A. If z € AN (a,2a)
then  — a € (0,) N A which is again a contradiction. Thus AN (a,2a) = 0.
It follows by induction that A N (na, (n + 1)a) = @ for each positive integer n
proving that AN (0,00) = {o, 2c,3cr,...}. Hence A = {na : n € Z}. Now let
B be a basis for R over Q and let {b,} be a sequence of distinct points in B.
Let A,, be the subgroup of R generated by B\{b,+t1,bnt2,...}. Then R = UA,
so at least one A, must be of second category. Since this group is not discrete
it is dense.

Problem 88

Characterize metric spaces (X, d) such that pointwise convergence of a se-
quence real continuous functions on X implies uniform convergence.

Let fn(z) = {m}" where g € X is fixed. Then f,(z) — 0 unless
d(xo,z) = 0 in which case f,(z) = 1 V¥n. Thus, if (X, d) has the stated property
then I,y is continuous. In other words, {zo} is open and this is true for
each zg. If X is an infinite set with distinct elements x1, xo, ... then g, (z) = % if

x =xp,0if x ¢ {x1, 29, ...} defines a sequence of continuous functions converging
pointwise but not uniformly. Hence X is a finite set. The converse also holds.

Problem 89

Let f : R — R map intervals to intervals. Does it follow that f is continuous?
What if f is also one-to-one?

f(z) = sin(2) for  # 0,0 for = 0 maps intervals to intervals but it
is not continuous. [ Ramark: any derivative has intermediate value property(
Problem 416 below and its solution?) but a derivative need not be continuous].
Now assume that f is one-to-one and has intermediate value property. We claim
that f is montone. Once this is proved it follows easily that f is continuous.
Suppose, if possible, z < y < z, f(z) < f(y) and f(2) < f(y). Let I = f([z,y])
and Iy = f([y,2]). Then I; and I are intervals and Iy N I = {f(y)}. Let
[a1,b1] and [ag,bs] be their closures. Either bo = a; or by = az. Note that
f(z) < f(y) < by and f(z) > ag so az < by. Thus we must have ba = a1 and
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fly) = b2 = a1. But f(z) € I so f(z) > a1 = f(y) which is a contradiction.
Thus we cannot have points z,y, z with z < y < z, f(z) < f(y) and f(2) < f(y).
Similarly we cannot have z < y < z, f(z) > f(y) and f(z) > f(y). This proves
that f is monotone.

Remark: the fact that f is one-to-one was used only to conclude that I1NIy =
{f(y)}. This would be true if we only knew that I; N I is a finite set. Thus
if f~1({a}) is empty or a finite set for each a and if f has intermediate value
property then it is continuous.

Problem 90

Let f : (0,00) — (0,00) be a convex function and a,b € R. Show that
zf(a+ L) is a convex function on (0, 00).

We can write f(x) = sup{a;z+ 3, : i € I}. We have xf(a+§) = sup{ (ac; +

Problem 91

Let A, B, C be subsets of a normed linear space X such that A+ C C B+C
and C'is bounded. Show that A is contained in the closed convex hull of B

If not, there exists ag € A and a* € X* such that 2*(ap) = 1 and z*(x) < 0
for all x € B. Let ¢ € C be such that 2*(c) > sup{z*(y) : y € C} — e. There
exists u € C' and b € B such that ag + ¢ = b+ u. We have 1 + 2*(¢) < 2*(u) <
sup{z*(y) : y € C'} < 2™(c¢) + € which is a contradiction.

Problem 92

Let A, B,C, D be n x n matricies such that AD* — BC* = I, AB* = BA*
and CD* = DC*. Prove that A*D —C*B =1

A B D* —B* D* —-B* A
‘We have C D oA > :Iandhence( _C* A ) ( C

I. This implies that A*D — C*B = 1.

Problem 93

Let (X, d) be a metric space such that for any z;,zs € X there exists u € X
with d?(zy1,x2) + 4d%(z,u) < 2d?(x1,z) + 2d* (22, ) for all x € X. Show that u
is uniquely determined by z; and x5 and that d(u, z1) = d(u, z2) = 3d(z1,22).
Prove or disprove that d*(z1,z2) + 4d?(z, 2522) < 2d*(xy1,z) + 2d° (22, z) for

all z € X when X is a normed linear space.
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We have d?(x1,22) + 4d? (w1, u) < 2d? (21, 22) and d? (21, x2) + 4d?(22,u) <
2d?(z1,x2) so d?(zq,u) < d*(z1,@2) or d(z1,u) < Fd(z1,22) and d(x2,u) <
Ld(zy, x5). If strict inequality holds in one of these we get d(z1, 22) < Sd(x1,22)+
5d(x1,22) = d(x1,22), a contradiction. Hence d(u,z1) = d(u,z2) = 5d(x1,2).
Now 4d?(x,u) < 2d?(xq,z) + 2d*(xe,x) — d*(w1,22) Vz. If 2 is a point of z
with d(z,21) = d(z,22) = 2d(z1,22) we get 4d*(z,u) < Osoz =u. If X is a
normed linear space then the inequality d?(z1, x2)+4d?(z, 2322) < 2d*(z1, )+
2d? (x4, x) need not hold for all x € X! Let X = C[0,1],z1(t) = 0, 22(t) = 2—2¢

(0 <t <1).If z(t) = 1(0 < ¢ < 1) then d(zy,22) = 2,d(z, B322) =

1,d(zy,2) = 1 and d(wg,z) = 1. Hence d?(z1,x2) + 4d?(x, Lgmz) = 8 and
2d?(z1, x) + 2d?(xq, 7) = 4.

Problem 94

True or false: if X is a normed linear space then ||z —y|* + ||z +y|*> <
2|2 + 2 |y||* Yo,y € X.

True or false: if X is a normed linear space then ||z — y|* + ||z +y|* >
2|z))* + 2 |ly|* Va,y € X.

Both are false. In fact the transformation (z,y) — (%, #5¥) shows that

the two properties are equivalent and hence they are both equivalent to the fact
that X is an inner product space.

Problem 95

Let X be a normed linear space and f : X — R is locally convex in the
sense for each © € X there exists § > 0 such that f is convex on B(z,d). Does
it follow that f is convex on X7

Yes. Let x,y € X and consider the function g(¢t) = f(tz+(1—¢t)y),0 <t < 1.
Then ¢ is locally convex on [0,1]. Hence its right hand derivative is locally
increasing which implies it is increasing. Hence g is a convex function and so is

fTg(t) < (1—1)g(0) +tg(1)].
Problem 96

Let {¢,,} be a sequence of continuous functions : (0,00) — (0, 00). Show that
there is a continuous function f : (0,00) — (0, 00) which — oo faster then each

of the ¢/ s [i.e. lim J(a)) = oo for each n]

Let a, = sup{fn(z) : 0 < z < n} where f,, = max{¢,(z), d5(x),..., o, (x).
Let f(z) = (n+Dapp1 +1ifn <z <n+41/2
T 20+ Dansr — (04 Daga]z + (04 Daggr + 1= @0+ D0+ anss — (04 Daga] if n+ 1
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Then f is continuous and  inf f(x) = (n 4 1)any1 + 1. It follows that

n<zrn+1l
inf inf inf
nSJ{'%n#»lfCE) ngzu%nﬁ»lf(z) _ ngzu%n#»lf(m) _ (n+1)an+1+1 > (n+ 1) Thus
sup  fa(z) = sup  fo(z) nt1 - Qnt1 :
n<z<n+1 o<e<nt1

F@) S pilifn <z < ntl.Ifntk <z < ntk+1then L& > F@ o g

Fn () fn(@) = frir(x)
This implies that ffn ((Ix)) — 00 as & — oo for each n. Of course, Jfg) > JZ: L((xx)) S
¢f(é«)') — 00 as x — oo for each n.

Remark: sup{f(y) : 0 <y < z} is easily seen to be a continuous increasing
function exceeding f at every point. By problem 197 of CASolutions.tex it
follows that there is an entire function g such that g(z) > ¢,,(z) Vo € R,Vn € N.
In particular g is "smooth".

Problem 97

log 2
log 3

Prove that the Hausdorff dimension of the Cantor’s ternary set C' is

[For A C R and p > 0 let ju,(A) = hH[l) inf{Z(diam(Un))p : Ul s are open

n=1

with diam(U,) < € Vn and A C U Ap}. There is a unique d > 0 such that
n=1

pp(A) = oo if p < d and p,(A) = 0if p > d. d Is called the Hausdorff dimension
of Al.

Let p, (A) = inf{Z(diam(Un))p : Ul's are open with diam(U,) < € Vn
n=1

oo
and A C U U,}. Let the 27 closed intervals that remain at the n — th stage in

n=1

2’”
the construction of C be I, 1,1y 2, ..., In2n. Then C C U L, j and p, 3-.(C) <
j=1
on
Z(diam([n,j))p =2 =1ifp= ng Hence the Huasdorff dimension of C
j=1
does not exceed }gég

Now let U/ s be bunded open sets with and C' C U U,. Let J,, = [inf U,,sup U,].

n=1

Let V,, = (inf U,, — 55, sup Uy, + 55 ). Then C' C U V,, and hence there is a pos-

ony
n=1
N
itive integer N such that C C U V. If diam(V,,) < 1/3 then we can find
n=1

an integer k,, such that zrr < diam(V,) < zi-. Note that V,, can inter-
sect at most one of the intervals Iy, 1, Iy, 2,..., I, orn. This is because these
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intervals are separated by a distance of 3,% and diam(V,) < 3,% Choose j

so large that 31% < diam(‘;n) and j > k, for 1 < n < N. If I;n intersects
one of the intervals Iy, 1,1, 2,..., Ik, o%n, say Iy, ; then Iy, ; contains 27 =kn

s

intervals at the j — th step in the construction of C. Hence V,, intersects at
most 2/7%n intervals at the j — th step in the construction of C. Hence, the

N
sets V,,,1 < n < N can intersect atmost 22]'_’“" of those intervals. But

n=1
N N
C C U V, and hence all the intervals I 1, I; 2, ..., I; o; intersect U V. It fol-
n=1 n=1

N N
lows that if t = 1262 then 27 < Z 20— hn < Z 27~ kn 3tthnt (diamV;,))* [because

log 3
n=1 n=1
N N
g < diam(V,,)] = Z 21+ (diamV,,))t and Z(diamvn))t > 1 = 37" This
n=1 n=1
N 00
gives Z(diamUn) +e/27 1)t > 37 and Z(diamUn) +¢€/2"7 1)t > 37t Let-
n=1 n=1
(oo}
ting ¢ — 0 we get Z(diamUn))t > 37! This holds for any cover of C' by
n=1

bounded open sets and hence p,(C') > 3. In particular u,(C) > 0 and hence

the Hausdorff dimension of C is at least t = 122:25 This completes the proof.

Problem 98

Show that there is no sequence {a,} converging to 0 such that f(n) — 0
faster then {a,,} for every continuous function f on R with period 27.[" f(n) — 0

faster then {a,}” means £ — (].

an

For each k let ng be so large that |a,,| < k% We may suppose ni < ng41

}(nk)

ank

ingx

Vk. Let f(z) = ¢z Then
k=1

_1
kzank

>1

Problem 99

f(ac+h)+f(}1?27h)f2f(a:) _

Let f : R — R be a continuous function such that }lLin%

0 Vz. Prove that f($+h)+f(}ﬁ_h)_2f(x) = 0 for all  and all A~ € R. Find all
functions f with this property.

If f(x) = ax + B then f(x+h)+f(hz;h)72f(m) = O‘(m+h)+°‘h(§*h)72°‘m We

0.
prove that the only functions satisfying the given property are these. Let g(z) =
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f(z) = fa) = F=2{f(b) — f(a)} for a < & < b (where a and b with a < b are
arbitrary).

Then g(a) = 0 = g(b). If we prove that g(z) = 0 Vz € (a,b) then, since a and
b are arbitrary we get the desired conclusion. Suppose, if possible, g(zo) > 0
for some zo € (a,b). Let ¢(z) = g(z) — 36(z — a)(b — ) where § > 0 is small
that g(zo) — 26(2z0 — a)(b — z¢) > 0. Then ¢ has a positive maximum on [a, ]
attained at some point u of (a,b). We have ¢(u — h) + ¢(u+ h) — 2¢(u) < 0 for
|| sufficiently small. We now compute Slath)+élz—h)=2¢(2) iy torms of g. We get

(z+h)+¢(}iv h)—2¢(x) _ (z+h)+g(hx h)—2g(x) 5(r+h a)(b—z—h)+(z— hha)(b z+h)—2(z—a)(b—x) _

(m+h)+Q(z h)=29() 4 5 = f(z+h)+f(w h)= 2f(w) +6 — & as h — 0. This contra-
diction ShOWS that f(z) = az+ for some a and f.

Problem 100

o0
Let {a,} be a sequence of real numbers such that Z anx™ converges for all
n=0

z > 0. Show that the equation / Zan "dx = Zan/ “Tx"dz holds if
n=0

the series on the right is convergent

Remark: this is a result on interchange of limit and integral where the basic
theorems of measure theory don’t seem to be of much use!

oo

o0
First note that /e‘”x”dw = nl. Let b, = (n!)a,. It is given that Z b, is
0 n=0
N
convergent. Let ¢ > 0 and choose T' € (0, 00) such that e=T Z Tn—T < € where

n=0
>

N is so large that < e for k > N. We write ¢, for Z by, so |ex| < € for

n=~k n=~k
k> N.
o0
Now |e~ T Z cnlr| < (supleal) e - Cpee T Z (sup |en|)
n=0 n=0 n=N+1
N o) ©0
e T Z :Z—T,L + € < €(1 4+ sup|cy|). We have to show that Z % e *z"dr — 0
n=0 n=0 T
as T — oo. [ Indeed
T
/ Z ane Tx"dx = Z an / ~*x"dx (by uniform convergence of the power
0 "= 0 n=0
series)
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oo oo
oo

= Z an / ”a?"d:c—/e_xx"dx) = Zan(/ “Txndx) io 7 “Tandx)].

0 T n=0
oo

Notethat/ “Tapndy = e~ T{T"+nT" 4.+ (n)T°}. To ShowZ—*; ~T{ny

T n=0

o0
nT" 4.+ (n))T°} — 0. This means Z bpe= T %?—F%—&—...—l-%—FTO} — 0.

n=0
o

Writing b,, as ¢, — ¢,41 this becomes e -T Z en L T+ We have already seen that

n=0
—TE
Cnn

large that Z b
n=~k

< €(1 +sup |c,|) for T such that e=T Z I < € where N is so
n=0

< e for k > N and the proof is complete.

Problem 101

If the graph of f : R — R is closed and connected then f is continuous. This
does not extend to maps between general connected metric spaces.

First, the counter-example: let X be C[0,1] with the L' metric and Y be
C[0,1] with the sup metric. Let f be the identity map from X to Y. The
graph of this map is a subspace, hence convex, hence path connected. The
graph is clearly closed but f is not continuous. Now the proof of the first
part: Let z, — x and |f(z,)| — co. We claim that there is a 6 > 0 such that
ly—x| <6 = |f(x)— fy)| <1or|f(z)— f(y)| > 2. If the claim is false then
we can find a sequence {u,} converging to z such that 1 < |f(z) — f(u,)| < 2
Vn. There is a subsequence {f(un,)} of {f(un)} converging to some point w.
Since the graph is closed we get w = f(z). But 1 < |f(z) — w]|. This proves the
claim. Let G be the graph of f. Then GN{[a,b] xR} = (GN{[a,b] xR} N{(¢t,s) :
|f(z) —s] <1}HU(GN{[a,b] x R}N{(t,s):|f(x) —s| > 1}) where [a,b] is the
interval [x — §,x + §]. If we prove that G N {[a,b] x R} is connected we get a
contradiction because the two sets on the right contain (z, f(z)) and (2, f(z,))
for n sufficiently large. This would prove that x,, — x implies that {f(x,)} is
bounded and the fact that g is closed shows the only limit point of this bounded
sequence is f(x). It follows that f is continuous. To complete the proof we prove
that G N {[a,b] x R} is connected. If g : GN{[a,b] x R} — {0,1} is continuous
we can extend it to a continuous function g : G — {0, 1} by making it constant
on g:GN{(—o0,a] xR} and on g : G N {[b,00) x R}. The extended function
must be a constant and so must be the original function.

Problem 102.
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Let I = (a,b) be a finite or infinite open interval in R and d be a metric on
it which is equivalent to the usual metric. Prove that there exist disjoint closed
sets A and B in I such that d(A, B) = 0.

Ifa = —oc0and b = o let A = N. For each n € N choose §,, > 0 such
that d(n,n + d,) < % This is possible because n + % — n as k — oo. Let
B ={n+d, :n € N}. Then A and B are disjoint closed sets in (I,d) and
d(A, B) = 0.

Ifa > —-ocotake A={a+L:neNand B={a+21+6,:neN}
where d(a + 2,a+ 1 +6,) < 2 Vn. If b < 0o take A = {b— 1 : n € N} and
B={b—2%—-6,:neN} whered(b—+,b— 1 —d,)<iVn

Problem 103

Suppose A C R™ is such that the distance between any two points is rational.
Prove that A is atmost countable.

By translation we may suppose 0 € A. The result is obvious for n = 1 since
A C Q in that case. Assume that the result holds in R* if & < n. We may
assume that A spans R". Let {1, 2, ..., 2, } be a basis for R" contained in A.
For any rationals r,rq,...,7, we claim that there is at most one point x such
that ||z — x;|| = r; Vi and ||z|| = r. Indeed if  and y both have norm r and
distance r; from z; = z; Vi then < z,2; >= 3[r? —r? — lz]?] =< y, 2 >
Vi which means x — y is orthogonal to each x;. Thus, with each a € A we can
associate (n+ 1) rational numbers 7,71, ..., 7, and this association is one-to-one.

Note that Q can be replaced by any countable set.
Problem 104
Let A C R™ be countable. Show that R™\ A is connected.

Consider the sets {tz : t > 0} where ||z|| = 1. These sets are disjoint and
hence only countable many of them can intersect A. Similarly {y : ||z|| = r}
can intersect A for at most countably many positive numbers . Removing these
we get rays and circles disjoint from A and the union of these rays and circles
is a connected dense subset of R™ containes in R™\A. Since any set that lies
between a connected set and its closure is connected the result follows.

Problem 105

Let X be a separable normed linear space and f be a continuous linear
functional on a subspace M of X. Show without using Zorn’s Lemma ( or any
of its equivalents) that f can be extended to a continuous linear functional on
X with the same norm.

Let {z,} be the intersection with M€ of a countable dense set in X. Let M,, =
span(M U {x1,z2,...,x,}),n = 1,2,.... As in the usual proof of Hahn-Banach
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Theorem we get extensions fi, fa, ... of f to My, My, ... such that || f,.|| = || f]| Vn
o0

and fry11 = fn on M, Vn. Let N = U M,, and define g(z) = fn(z) if z € M,,.
n=1

Then ¢ is a continuous linear map on the subspace N and |g(z)| < [|f|l ]zl

Vz. Since N is dense in X it is obvious that g extends to a continuous linear

functional on X with the same norm as f.

Problem 106
Let f : [0,1] — R be a continuous function such that f(z) > /f(t)dt

0
Vt € [0,1]. Prove that f(z) > 0 Vz € [0, 1].

Is the following discrete analog true?
If a1,a9,...,an are real numbers such that apy; > a3 + az + ... + ai for
1 <k < n then a; > 0 for all k.

Let g(z) = e"’”/f(t)dt. Then ¢'(z) = e *[f(z) — /f(t)dt] > 0 for all .
0 0
Hence g is strictly increasing. Also g(0) = 0 so g(z) is positive. It follows that g2

is also strictly increasing. Now L ¢?(z) = 2g(z)g/(z) = {Qe_x/f(t)dt}{e_f‘[f(x)—
0

/f(t)dt]}. This proves that /f(t)dt > 0 and the hypothesis shows f(x) > 0.
0

0
The discrete version is obviously false. [And obviously a; > 0 for & > 1 if
ay = O]

Problem 107

Let p(z) = 22 + az + b and A be the 3 x 3 matrix with entries p(i — 5),0 <
1,j < 2. Show that the determinant of A does not depend on the coeflicients of
p.

p(0) p(=1) p(-2)

We have A = | p(1) p(0) p(=1) |. Add the first column and (—2)
p(2) p(1)  p(0)

times the second column to the third column. One sees easily that the third

2
column becomes | 2 | . For example, p(0) — 2p(—1) + p(=2) =b—2(1 —a +
2
b) + (4 —2a+b) = 2. Now subtract the first row from the second and third rows
2
to get a matrix whose last column is | 0 | . Expanding the determinant from
0
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the last column we see that the value of the determinant is 2[p(1) — p(0)][p(1) —
p(=1)] = 2[p(2) — p(0)][[p(0) — p(—1)] which is 8.

Remarks: the argument actually works for monic polynomials of any degree
and the value of the determinant is (n!) "™ when p(x) is of the type 2" +
Ap12" "L+ ap_0x™ 2 + .+ a1x + ag. [AMM, 2010)

Problem 108

Let A be a bounded set in a Hilbert space. Show that there is a unique
closed ball of minimal radius containing A.

Let « = inf{r >0: A C E(a:,r) for some x. Let € > 0 and A C é(zn,rn)
with r, | a. Let ng be such that 7, < vVa?+e¢ for n > ng. Claim: A C

B(Znt2m \/a? —¢) if n and m are > ng and ||z, — ., || > 8€. Once this claim
is established we get a contradiction to the definition of o and we can conclude
that ||z, — || < 8¢ whenever n and m are > ny. This would prove that {z,}

is Cauchy; if x,, — x it is clear that A C é(m, «) proving the existence part.
Let a € A. Then |la — z,|| < 7, and ||a — 2| < rp. This gives ||z, — @ |” +
4lja — Zadtm ) la = an|® + 2[la — zm||* < 2r2 + 212, < 4(a? + €). Hence
l|zn, — || > 8¢ implies 4 Ha — Zatom ’2 < 4(a®+¢€)—8e. This holds for alla € A

so A C B(%7 Va? —¢). This completes the proof of existence. Unique-

ness: suppose A C é(m,a) and A C E(y,a). If a € A then |la — z|| < a and
oty 112
la —y|| < . We have ||z — y||*+4 ||a — Z2||" = 2 [la — z]|* +2]ja — y||* < 4a?.

If & — y|| = 6 > 0 then [ja — %‘Z’HQ < a? — 16% Va € A contradicting the defi-
nition of a. Hence z = y.

Problem 109 [See also Problem 1]

Let 1 be a finite positive measure on the Borel subsets of (0, 00). If g € L™ (1)

o0

and /e’zp(:z:)g(x)d,u(m) = 0 for every polynomial p show that g = 0 a.e. [u].
0
Conclude that {e~*p(x) : p is a polynomial} is dense in L ().
The second part follows immediately from the first. For the first part let

o(z) = /e‘z‘”g(x)du(a:) for z € C with Re(z) > 0. A straightforward argu-

0
ment shows that ¢ is analytic in {z € C: Re(z) > 0}. Further, ¢("(z) =

/(—J;)"e_”g(m)du(x) for z € C and n > 0. By hypothesis this gives ¢™ (1) = 0
0
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oo

Vn > 0. It follows that ¢(z) = 0 whenever Re(z) > 0. In particular /e_mg(x)d,u(ac) =
0

0 if ¢ > 0. The finite positive measures v; and vy defined by dv; = gtdu and

dve = g~ dp have the same Laplace transform and hence they are equal. This

means g(z)du(x) = 0 which is what we wanted to prove.

Problem 110

kx
Find all continuous functions f : (0,00) — (0,00) such that z — /f(t)dt is
x

constant on (0, co).

kx
If k =1 then f is arbitrary. Assume that k # 1. We have 0 = %/f(t)dt =

kf(kz) — f(x). Let g(x) = xf(x). Then g is continuous on (0, 00) and g(kx) =
kxf(kx) = xf(x) = g(x) Vx. There is a continuos function h on (0,00) such
that h(z + a) = h(z) Yz and f(x) = @ = @ where o = In k. This is the
desired characterization.

Problem 111

Let A C C be a convex set such that x € A = —x € A. If a1, as, a3 € A show
that at least one of the 6 numbers a| +as, a1 —as, as+as, as —as, az+aq, a3 —aq
must be in A.

Since the three given points are necessarily lineraly dependent over R we can
find r, s, t € R not all 0 such that ra; +sas+tas = 0. Suppose t = 0. Then we can
either write a; = Aag or as = Aaq. If a3 = Aao it is easy to see that as — a1 € A.
By symmetry the same thing holds if as = Aa;. Similar argument can be given
in the case s = 0 and the case r = 0. Assume now that all the coefficients r, s, ¢
are non-zero. By a suitable change of notations we may suppose |r| < |s| and
[r| < [t|. We have a; = —2ay — Las. Since

x € A= —x € A we may suppose a; = aas + Sag with « and g > 1. Now
a2 + a3 = pya1 + pyas + psaz where p; = ﬁw,@ = a+g£1,p3 = aj"rgil. This
proves that as + a3 € A.

Problem 112

Show that every polynomial p with real coefficients and real roots satisfies
the inequality (n — 1)[p’(z)]?> > np(x)[p” (x)] where n is the degree of p.

We use induction on n. The result is obvious if n = 1. Assume that it holds
for n = k and consider a polynomial p of degree k + 1 with real coefficients
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and real roots. We can write p(z) = (x — a)g(x) where ¢ is a polynomial of

degree k and a € R. We have to show that k[(z — a)¢'(z) + q(z)]*> > (k —

(z — a)g(x)[(x — a) ( ) + 2¢'(x)]. By induction hypothesis the rlght side
/

is < (k—1)(z — a)?k L (2)]? + 2(k — 1)(z — a)q(z)q'(z). We have to show
that +(z — a)?[¢'(z)]> + k[g(z)]? > 2(z — a)q(x)¢ (z). This inequality says that
[f(z —a)q'(z) — Vkq(z))> > 0 which is true.

Problem 113

1 1
(/f(r 2(/g (z)dx)? 1
0

4 : fyg: [01] — R are continuous, /f(m)g(x)dac =
[f@)2da / lo(e))2dz 0
0

Find sup{

O\H

0}.

The answer is %. To show that the supremum is < i we may suppose that
1

1
/ Nde =1 = /[ (z)]?dz. We can extend {f, g} to an orthonormal basis
0

0
1

1
for L2([0,1]) and Bessel’s inequality gives /12dx > (/f(x)dm)2 + (/g(x)dm)2
0

0
1

Hence 1 > 2(/f(x)dx)(/g(a?)dm) showing that the given spremum is

0 0

IN
i

1 1
Let f € C([0,1]) satisfy the conditions /f( )dx = 1 and / )2dr = 2.
0 0

1
[14/3(22 — 1) satisfies these conditions]. Let g = 2 — f. Then /f(m)g(a:)dm =

1 1
(/f(wdw2(/gmdw)2
0

0

1
F@)2de / l9(x))2da

0

,/g( dx—land/ )]2dz = 2. Hence

N

\H

Problem 114

a) Let U be an open set in R, F a closed set and U C F. Show that there is
a set A whose interior is U and closure is F.
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b) Find all sets A C R such that A = 9B for some B C R.

Let A=UU@QF)Uu((@nN F)\T}) [OF is the boundary of F]. U C A so
U C A° Let x € A°. Suppose, if possible, = ¢ U. Note that A C F so A° C F°.

Thus = € F°. Since z € A and = ¢ U U JF it follows that = € (QﬂF)\(}

Thus, z ¢ U. We can find 7 > 0 such that B(x,r) CANF'N(U) CcQQNF
(by definition of A). But @ has no interior and this contradiction proves that

A" = U. Now, ACF Letz e F.If v € 9F then z € A C A. Otherwise,
2 € FO. If 2 € U then z € A. Otherwise z € FO\U and there exists 6 > 0 such
that B(z,d) C FO\[}. If {x,} is a sequence of rationals in B(xz,d) converging
to x then z, € (@ N F)\(_] for each m which implies z,, € A for each n. Thus

z=limz, € A. This completes the proof.

b) If A is any closed set in R let D = dAU (Q N A%). Clearly A C AU (QN

A%)~ C D. Hence D = A. We claim that D° = (). Suppose x € D°. If z € QN A°
then there is a ball B(z,r) C D N A° and hence this ball cannot intersect 9A.
However B(z,r) C D = dAU(Q N A°) so B(z,r) C D = (QNA%) C Q, a
contradiction. Thus, x ¢ @ N A which shows x € 9A. We have proved that
DY C QA. Clearly dA has no interior and we have proved that D° = ). Now

note that 0D = b\D0 = A\ = A. Thus a set is the boundary od another set
if and only if it is closed.

Remark: only two properties of @) are used in the proofs above: it has no
interior and it is dense. The results therefore extend to any topological space
in which such a set exists. [ Countability of @ is not required]

Problem 115

Let H be a Hilbert space and C be a closed convex subset. For any © € H
let Pz be the unique point of C' that is closest to C. Show that ||z — y||2 2
|z — Pz||” + ||y — Pz|* vy € C.

We have ||z — y||*> = ||z — Pz||* + |ly — Pz|* + 2Re < x — Pz, Pz —y > . If
possible let Re < © — Px, Px —y >< 0. Let A € (0,1) and w = Ay + (1 — \) Px.
Note that u € C. Consider ||z — ul®> = ||z — Ay — (1 — \) Pz’ =

<z—-Ay—(1—-=MNPzx,z—y— (1 - NPz >=<z— Pz — ANy — Pzx),z—
Pz — Ay — Px) >

= ||z — Pz||* + A?|ly — Pz|”> + 2Re < z — Pz, A(Pz — y) > . For X suff-
ciently small this last expression is less than ||z — Pz||> and this contradicts the
definition of Pux.

o1



Remark: The definition only says ||z — y[|* > ||z — Pz||* Vy € C. It is inter-
esting to note that there is always a lower bound for the difference ||z — y H2 -
|z — Pa||*.

Problem 116

Let {z € R" : ||z|]| = 1} C U é(xj,rj) where E(xj,rj) is the closed ball
j=1

with center x; and radius r;. Show that 0 € E(xj, r;) for some j. Show that the
conclusion is false if the number of closed balls is allowed to exceed n.

For the counter example take n = 2 and consider the closed balls with centers

at 2, —2, 21, —2¢ and radius % each. For the first part assume that 0 ¢ é(ml, r1).
There is an (n—1)— dimensional subspace M,,_; which is disjoint from é(xj, rj)-

n — —
We have {z € M,,_1 : ||z|| = 1} C U B(zj,7;). f 0 ¢ B(x1,71) there is an

=2

(n—2)— dimensional subspace M,,_o of M,,_; disjoint from é(xg, r9) and so on.
If none of the given closed balls contains 0 then can repeat this argument until we

get a 1— dimensional subspace M; such that {x € M; : ||z|| = 1} C é(xn,rn).

However é(a:n,rn) is a convex set and if x € My with ||z]| = 1 then this ball

contains both x and —z; hence it conatins 0 = #

Problem 117

Let C be a closed convex set in a Hilbert space H. Let P(z) be the point of C
closest to . Show that ||P(z) — P(y)|| < ||z — y|| Y&,y € H. [See also Problem
118 below].

If y € C we claim that Q(z) = P(z) where Q(z) is the point on the line
segment [y, P(z)] that is closest to . (Since the line segment is a closed convex
set Q(x) exists). Assuming this claim we complete the proof as follows: let
x1,x2 € H. Apply the claim with @ = x9,y = P(z2) to conclude that Q1 (z2) =
P(z5) where Q; corresponds to the closed convex set [P(z3), P(z1)]. By sym-
metry Q1(z1) = P(z1). [ We note that [P(x2), P(x1)] = [P(z1), P(z2)]!]. Now
Re < &1 —P(z1), P(z2)—P(z1) >< 0 and Re < @9 — P(x3), P(z1)—P(z2) >< 0.
[ This was proved in Problem 115 above]. Rewrite the second inequality as
Re < P(z3)—x2, P(z2)—P(z1) >< 0 and add these two inequalities to get Re <
z1—xo+P(x2)—P(21), P(x2)—P(x1) >< 0. Thus Re < z1—x2, P(z2)—P(z1) >
+||P(z2) — P(z1)||*> < 0. Finally this gives ||P(z2) — P(z1)]* < —Re < 7 —
z2, P(x2) — P(x1) >< |lz2 — z1| [|P(z2) — P(z1)|| completing the proof. We
now prove the claim. If the claim is false there exist A € [0,1] such that
|z — {A\y + (1 = \)P(z)}|| < [|[= — P(x)| . This can be written as ||z + 52 {z — P(2)} — yH <
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|tz — +P(a)| = ||z + 52{z — P(2)} — P(2)||. This would be a contradic-
tion if we knew that P(z) and P(z + :52{z — P(z)}) were equal. To com-
plete the proof we prove this last fact: (geometric meaning: the projec-
tion of z on C is also the projection on C of any point on the ray from
x in the directioon of z — P(z)). Suppose this is false. There exists y €
C such that ||z + %{x —P@)}—y| < ||z + %{x — P(z)} — P(x)||. This
gives |z — (1 = AN P(z) — \y|| < ||z — (1 = AN)P(z) — AP(x)|| = ||l — P(x)|| . This
is clearly a contradiction.

Problem 118

In Problem 117 show that ||P(z) — P(y)|| < ||z — y|| unless P(z) — P(y) =
T —y.

Suppose ||P(z) — P(y)|| = ||z — y|| - From the argument used in Problem 117
we get Re < z—y+P(y)—P(z), P(y)—P(z) >= 0. This gives || P(z) — P(y)|” =
2Re <z—y, P(z)—P(y) > . Hence [[{P(2) — P(y)} — (& — y)|* = 2z —y|* -
2Re < P(z) — P(y),z—y >= 2|} — y|I* = 2|z — y||” = 0. Thus P(x) - P(y) =
T —y.

Problem 119

Let f : [0,00) — [0,00) be non-decreasing with / L dr = oo. Show that
1

f(z)
/mdx = oo. Can we also assert that /zlog(f(m))kl)g(log(f(m)))dx = o0?
1 1
[e'e] [e'e] t
1 1 t/2 1
It / FToa(Fm) 40 < 00 we get / Toa( e Y < 00- Hence garimy < / a7y W
1 0 t/2

0 as t — oo. This gives log(t){% < i and henceﬁ;) < et for large t. But then

(o] o0
/ ﬁ;)dt < oo which means / ﬁdm < o0, a contradiction. We now show

1 1

[e.e]
. o™y
that /.’L’log(f(w))lég(log(f(x)))dz can be finite. Let k, = e©" ) n =0,1,2.. and
1

oo

f(z) =k, on [ky,—1,k,) for all n > 1. We see that /

Ze’”<oo. )

Problem 120

1
TToa(J (@) Tog(log (7 (@) 9% <
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a) Let (X,d) be a compact metric space and T : X — X be onto. If
d(Tz,Ty) < d(x,y) Va,y prove that d(Tz, Ty) = d(x,y) Y, y.

b) Let (X, d) be a compact metric space and a continuous map T : X — X
satisfy d(Txz, Ty) > d(x,y) Yz, y. Prove that the conclusion of part a) holds.

Remark: several improvements of these results are given in the next few
problems. See also Problem 423.

For each n, T™ (the n — th iterate of T') is onto. Given z,y we can find
x, and y, such that T"(x,) = x and T"(y,) = y. By compactness we can
find ny < ng < ... such that {xy,} converges to some element u and {yx,}
converges to some element v. Note that d(T"u,T™v) is increasing in n. Now,
d(z, T™ (u)) = d(T™ (zp,), T™ (u)) < d(xy,,u) — 0. Thus T (u) — z as k —
0o. Similarly 7™ (v) — y as k — oo. It follows that d(T™* (u), T™ (v)) — d(z,y).
Monotonicity of the sequence {d(T"w,T™v)} shows that d(T"(u),T"(v)) —
d(z,y). In particular d(T(T™ (u)), T(T™ (v))) — d(z,y). Therefore d(z,y) =
Hm d(T(T" (u)), T(T™ (v))) = d(Tz,Ty) because T (u) — = as k — oo and
T (v) — y and T is continuous.

b) Claim: T'(X) = X. If not there is an element y in X\7T'(X). Since T(X)
is compact, a = d(y, T(X)) > 0. Now a < d(y, T*(y) < d(T"y, T"**y) for all
positive integers n and k. It follows that {T™y} has no convergent subsequence
contradicting compactness of X. Thus T is onto and we can apply part a) to
T~ to complete the proof.

Problem 121

Let (X,d) be a compact metric space and T : X — X satisfy d(Tz,Ty) >
d(x,y) for all z,y € X. Then T is an isometry of X onto itself. [ Thus continuity
of T need not be assumed in previous problem]

[See also Problem 234 below]

Let xg,y0 € X and § > 0. Since X can be covered by a finite number of
open balls of any given radius there is an open ball of radius §/4 containing
infinitely many of the points 7"z and an open ball of radius §/4 containing
infinitely many of the points T™yq. Let these balls be B(u,0/4) and B(v,4d/4).
Let ny < ng < ... with 7™z € B(u,0/4) and T™yo € B(v,d/4) Vk > 1. Let
k <I. Then d(T™ xo, T™x0) < d(T™* zg,u) + d(T™2z0,u) < §/2 and (similarly)
d(T™ yg, T™yg) < §/2. Hence d(xzo, T™ "txg) < d(T™ a0, TTT™ "xy) <
/2 and (similarly) d(yo, T™ ™ yo) < §/2. Thus, d(Txo, Tyo) < d(T™ ™ xo, T™ ™ yg) <
0/2 4 d(xo,yo) + /2. Since xg,yo € X and § > 0 are arbitrary we see that T is
an isometry. It remains to show that T is onto. The sets X, T(X), T?(X), ... are
all compact and this sequence is decreasing. The sequence has finite intersection

oo

property and hence X, = ﬂ T™(X) is non-empty. Note that 7' maps X, into
n=0

itself. In fact, T(Xo) = Xoo. [ Since T is an isometry it is one-to-one]. Let

X, ={zx € X :d(x,X) > 7} for each 7 > 0. X, is closed. Suppose X, # 0.

o4



Then X,,T(X,),T?(X,), ... is a decreasing sequence of compact sets with finite
intersection property. Hence there is a point w in the intersection X o, of these
sets. But X, . C X, N Xq. This is a contradiction because w € X, and so
d(w, X) > 7 whereas d(w, Xoo) = 0. This proves that X, = 0 for every 7 > 0
which means d(z, Xo) = 0 for all z € X. Thus X = X, C T(X) and T is onto.

Problem 122

Find an error in the following proof given in Amercan Math.
Monthly, vol. 98, no. 7, 1991 (p. 664).

Let X be a compact metric space and T' : X — X be any map with
7ilr;fld(T"x,T"y) > 0 whenever  # y. Show that T(X) = X. Solution: let

D(z,y) = ir;%d(T”a:, T"y) where T° = I. D is a metric and D < d. It follows by
compactnesgofX that the identity map i : (X, d) — (X, D) is a homeomorphism
and (X, D) is a compact metric space. By definition D(Tx,Ty) > D(z,y). By
Problem 121 above T is an isometry of X onto itself.

Why is D a metric? Minimum of two metrics need not be a metric. Example:
X = {0,1,2}, d the usual metric and D(0,1) = .5,D(1,2) = 1.5, D(0,2) = 2.
Note that if d = min{d, D} then d’(0,1) = .5,d'(0,2) = 2 and d'(1,2) = 1 so
d'(0,2) > d'(0,1) +d'(1,2). [ It is not clear if the statement above is true].

Problem 123
Is the product of two derivatives on R necessarily a derivative?

No! Let ¢(z) = zsin(L) if 2 # 0 and ¢(0) = 0. Then (z¢(z)) = z¢'(z) +
o(x) = ¢(x) — ¢y (2) + ¢(x) where ¢, (x) = cos(L) if  # 0 and ¢,(0) = 0. It
follows that 2¢(z) — ¢, (z) = (z¢(x))’. Being continuous ¢ is a derivative and so
is ¢, (because 2¢(z) — ¢, () is a derivative). Let f' = ¢,. We claim that ¢7 is
not a derivatine: suppose g’ = ¢3. Then (g(z) — f(£))' = ¢i(z) — 1¢,(2/2) =
cos?(1) — L cos(2) = % if 2 # 0 and 0 if z = 0. This is absurd: g(z) — f(%) has
to be of the type x + a on (0,00) and = + b on (—o0,0) and a = b by continuity
at 0; but thenthe derivative at 0 is 1, not 0!

Problem124

Let p,q € (1, oo),% + % = 1 and f, g be non-negative continuous functions

on R with compact support. Show that /sup{f(x —y)g(y)rdz > || f], llgll, -
y

Il = (@) then sup{f(x = y)g(v)} > f(@g(x — a) = |/l gl —a)
and hence / up{ £z~ 1)g(o) > ]l gl - Similarly it g(b) = g, then

sgp{f(w —y)g(y)} > g) f(z—b) = ||gll, f(x =) so /sgp{f(w —y)g(y)}dz >

%)



19lloo 171l - Thus /Sl;p{f(w—y)g(y)}dw > max{]| fllo gl gl 1 /11, }- Hence

/ sup{f(z — y)g(w)yde > | FIL gl gl 1 £11/7 . Now [|g]ly/* gll? =
Yy

—1 s . 1 1
(9% 91077 = ([ 41/ = gl Smitasy 171207 1713 = 7], and the

proof is complete.
Problem 125

a) Find all positive numbers « such that there is a positive C! function f
on (0,00) with f'(z) > a[f(z)]* for all z sufficiently large for some a € (0, c0).

b) Does there exist a positive C! function f on (0,00) with f/(z) > af(f(x))
for all z sufficiently large for some a € (0, 00)?

a) For oo < 1 such a function exists: take f(z) = e*. Let o > 1. There is a
positive integer n such that n < a < n 4 1. We have % > alf(z)]* " for

x

x > T (say) and so [f(fl]:;” > L@t a/[f(t)]"‘_"dt for > T. Note that

1—-n

T
T

f/(x) > 0 and so f is increasing on (T, 00). Thus f(z) > f(T') and /[f(t)]a’”dt
T

> [f(T)]* (2 —T). Finallt this gives L@ > UTIT 4o p(T)]o=n (2 —T).

In other words {% +a[f(T)]*"(z — T)}[f(2)]"~! is bounded. This is a
contradiction because f'(x) > a[f(T)]* which implies (by Mean Value Theorem)
that f(x) — oo as © — oo.

b) The answer is no. As in a) we get f'(x) > af(f(T)) for x > T which
implies f(z) — oo and hence f'(z) — oo. It follows [by Mean Value Theorem)]
that f(z) >z + 1 for some z. By Mean Value Theorem applied to [z, f(z)] we
get f(f(x)) — f(x) = f'(B)[f(x) — ] for some 5 € (z, f(z)). Thus f(f(x)) >
7(@)+ af (f(@))[f (2) — ). This says £(z)+ [(/(@)}{alf(z) - 2] - 1} < 0 which

is absurd.

Problem 126

(o) o)
Let a, > 0 and Z an log(1+ a%) < 0o. Show that Z Ht_“w < oo almost
n=1 n=1
everywhere for any sequence {b,} C R¥. [ ||| is the norm in R¥].

Using the fact that a, log(1l + (%) — 0 we see that 0 is the only possible
limit point of {a,} in [0,00]. Thus a, — 0. Since log(1 4+ --) — oo it follows

o0 o0
that Zan < o0o. Let 0 < R < oo. We prove that Z Hac—aibu’“ < oo almost
n=1

n=1
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everywhere on Br = {z € R¥ : ||| < R}. This would finish the proof since

R is arbitrary. By deleting the first few terms of the series Z = b o Ve

n_l

may assume that a, < 2R Vn. Also we can split the sum Z W into

two parts: the one in which |b,]] < 2R and the one in Wthh |16n, || > 2R.
In the second sum we have ||z — b,||” > (2R — R)* and W < %. Since
Z an, < oo the second sum is finite. In the first sum ||b,| < 2R for all n. We
n=1

now define Y;, = m if |z — by"

> a, and Y;,, = 0 otherwise where X

is uniformly distributed over the ball Bg. If we prove that ZanYn < 00 a.s.

we are done because Y;, = m eventually w.p. 1. [ We use Borel-Cantelli

Lemma to justify this. We have to show that Z P{||X = b,||" < an} < co. But
P{IX = ba|F < an} < P{X~Y(B(bn,a/*)} < "’557312)/) where my, is k—

dimensional Lebesgue measure. Thus P{||X — b,|* < a,} < #]. Now EY,, =
dek /cR¥ (where c is the volume of the unit ball in R¥. Not-
anSHz—ank

ing that ||z — b,|| < 3R we see that EY,, < dmy(u)/cRF. Us-

flu H’“
an<|lull* <(3R)*

3R
ing spherical coordinates in R* we see that EY,, < C / LtF=1dt = Cllog(3R) —
Gk
n o
log(a}/ k)] for some constant C. It remains only to see that Z an log 311/%,6 < 00.
ar
n=1

Since log Cﬁf’k = log(3R) + %log(a%) < log(3R) + +log(1 + ai) the proof is

complete.
Problem 127

Let f: R — R be a function such that f o ¢ is Riemann integrable on [0, 1]
whenever g : [0,1] — R is continuous. Show that f is continuous on R.

Let C be a Cantor-like set of positive measure in [0,1]. Let h : [0,1] — R
be defined by h(z) = d(z,C) Vo € R. Let a € R and g(z) = a + h(z). By
hypothesis f o g is Riemann integrable on [0, 1]. Hence it is continuous a.e. In
particular there is a point ¢ € C\{0,1} such that f o g is continuous at c¢. Let
€ > 0 and choose d > 0 such that |(fog)(z) —(fog)(c)| < eif [xr—¢] <o
(and ¢+ 6 < 1). Let d € (¢,c+ 0)\C and y € [g(c), g(d)] = [a,a + h(d)]. Note
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that such a d exists because CY = ); also h(d) > 0. Since g is continuous, g
must attain the value y at some point  between ¢ and d. Thus ¢ < x < d and
g9(x) = y. Now |f(y) = f(a)| = |f(y) = fla+h(e))] = [f(g(x)) = f(g(c))] < €
since |z — ¢| < d — ¢ < §. We have proved that given any real number a there is
a right-hand interval [a, a + h(d)] on which |f(.) — f(a)| < e. This proves right
continuity of f. Applying this to f(—z) we see that f is also left-continuous at
each point.

Problem 128

Is the set of all n X n invertible matrices dense in the space of all n x n
matrices? Is the space of all invertible operators on a Hilbert space dense in the
space of all operators on that space?

If A is any n x n matrix then we can find §,, | 0 such that A + §,1 is
invertible for each n. Hence the answer to the first question is 'yes’. The answer
to the second question is mo’. Let H = [? and T{z,} = {0,z1,72,...}. We
claim that no operator S on H satisfying ||T'— S|| < 1 is invertible. Indeed, if
we define Ty by T1({z1,22,...}) = {z2,23,..}. Then T'T =1 so ||[I - TS| =
ITZT —T1S|| < ||IT = S|| < 1 implying that 715 is invertible. This implies that
T itself is invertible which is obviously false.

Problem 129

Let A be any n X n matrix. For any positive integer k£ Show that there is a
unique n x n matrix B such that B(B*B)* = A.

Existence is an easy consequence of the fact that we can factor A as UP
where U is unitary and P is non-negative definite. [ See e.g. Linear Algebra
by Hoffman and Kunze, p. 342. U is not unique in general, is it is interesting
that B is unique]. We define B as UQ where (2k + 1) — th root of P. Then Q is
non-negative definite and Q*+! = P. Thus B(B*B)* = UQ(Q*U*UQ)* =
UQ?*+! = UP = A. This proves existence. Suppose B(B*B)* = A and
C(C*C)* = A. Then A*A = (B*B)*B*B(B*B)* = (B*B)?*+1. Also A*A =
(C*C)?k+1 Tt follows that B*B = C*C. Now we see easily that ker(B) =
ker(C) = ker(B*B) = ker(C*C) = M (say). Thus B and C agree on M. They
also agree at any eigen vector of B*B = C*C corresponding to a non-zero
eigem value: B*Bx = Az, A # 0,z # 0 implies Az = B(B*B)Fz = BA*z = Mz
and, similarly, Ax = MCz so Bz = Cx. It follows now that B and C agree
everywhere.

Probem 130

Let f: R — R. Then f is continuous at 0 if and only if f(z,) — 0 wheneve
zn — 0. Can differentiability of f be characterized by the condition Z f(zy)

converges whenever E x, converges?
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We prove that if the stated condition holds then f is differentiable at 0. The

example f(z) = 2% 2, = (7\/1%" show that the converse is false. Problem 131

below gives more information on this]. Let us say that f is CP (convergence
preserving) if Z f(x,,) converges whenever Z x, converges. Note that if f and
g are CP then so are af +bg and fog (for a,b € R). Claim : f CP implies there
exists M € (0,00) and € > 0 such that f(z) < Mx whenever 0 < z < e. If this is
false we can find 2/, s such that 0 < z,, < # and f(z,) > nx, Vn. Let k,, be the
least positive integer > L Consider the series 1 +x1+... 421 (k1 terms)+zo+

n2xy,

o+ ...+ xa(ko terms)+.... The series converges because k,x,, < (1+ ﬁ)zn <
2. The series f(x1)+ f(z1)+...+ f(@1) (k1 terms)+ f(z2)+ f(z2) +...+ f(2) (k2
terms) does not converge because k, f(x,) > nx,k, > % This proves the claim.
To prove that f is differentiable at 0 we first show that D_f(0) > D% f(0).
[In this notation + and — signs stand for limits from the right and left and
subscript/superscript stand for limit inferior and limit superior. Thus D_ f(0) =

lir}?TiOnf M. Note that by taking x,, = 0 for all n in the hypothesis we get

f(0) = 0]. If possible let D_f(z) < DV f(0). Let D_f(z) < s <t < DT f(0).

Let ¢, | 0,0 < ¢, < 5= and L0 > ¢ for all n. Let d,, 1 0,—5 < dy <0

and —f(dd”) < s for all n. We may suppose ¢; > —d; > ca > —da..... Let ky, be

the least integer with k,c, > L and [, the smallest integer with l,d, < —2.

Consider the series Zmn where the first k; terms are ¢y, the next [y are d,
the next ko are co, the next Iy are dy and so on. Z f(z,) is not convergent
because tkyc, + slpd, = (t — $)kncn + s(knen + lndn),z kncy, diverges and

Z(kncn + l,d,,) converges. Since an converges and Z f(zn) diverges we
have proved that D_ f(0) > D* f(0). Replacing f(z) by f(—z) we get D f(0) >
D £(0). Hence D*(0) < D_f(0) < D~ f(0) < D f(0) < D* f(0) proving
that f’(0) exists. [Note that the claim above proves that DT f(0) < co. Hence
1/(0) < co. Changing f to —f we see that f/(0) > —oc].

Problem 131

Find a necessary and sufficient condition for f to be CP. [See Problem 130
for definition of CP].

The condition is f(x) = ax for all z in some neighbourhood of 0.

By considering f(x) — f’(0)xz we may reduce the proof to the case f'(0) = 0.
We have to show that f = 0 in a neighbourhood of 0. Claim: given A, B > 0 and
€ > 0 we can find a positive integer k and 6 > 0 such that § < €, A < kd < A+e€
and k|f(0)] < B. We can also find a positive integer k and § > 0 such that
—0 < e A< —kd < A+eand k|f(—9d)| < B. To see this assume € < 1 and choose

0 such that %—6)‘ < /%1 and § < e. The interval (4, 4+<€) contains an integer k

an < == < B. For the second oart pic m (— , — %) where
d k|f(6)] < &£ |f(6)| < B. For th d ick k in (—2F€, —4) wh

@ < AL;I. This proves the claim. To show that f = 0 in a neighbourhood
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of 0, suppose this is false so that we can find y/,s with 0 < f(yn) < yn < 3=
[ in order that y, and f(y,) can both be takeb to be positive we may have
tp replace f(x) by f(—z),—f(x) or —f(—xz)]. Let m,, be the least integer with
M f(yn) > %L Let 6, k,, be such that §,, < %,mnf(yn) < —knlp < mp f(yn)+
QL and k, |f(=d,)| < # Look at the series whose terms are y1,y1, ..., y1(m1
times), —d1, —01, ..., —01 (k1 times), ya, Y2, ..., y2(ma times), —da, —da, ..., =02 (ko
times),.... This series converges but the the series whose terms are images

under f of the terms of this series diverges.

Problem 132

Let f:(0,1) — (0,1) be a continuous function such that for any « € (0,1)
there is an integer n such that f(,)(z) = x where f) = f and f,) = fo f-1)
for n > 2. Show that f(z) = x Va € (0,1). Is the result true of (0, 1) is replaced
by [0,1]?

Clearly, f is onto. If f(x) = f(y) then choose n,m with f,)(z) = 2 and
fem)(y) = y. We have f(m)(x) = = and fm)(y) = y and this implies 2 = y.
Thus f is a continuous bijection of (0,1). Hence f is strictly monotonic. If it
is increasing and f(z) > x for some x then (for suitable n) x = fu,)(x) > =
a contradiction. Similarly if f(z) < x then z = f(,)(z) < = a contradiction
again. Thus, if f is increasing then it must be the identity. Now assume
that f is strictly decreasing. Suppose f(f(z)) > z and f(,)(z) = x. Then
f(2n)(®) > 2 by monotonicity and iteration of f(f(x)) > . This contradicts the
fact that fo,)(z) = 2. Similarly f(f(z)) < x leads to a contradiction. Hence
fof = f Wehave f(x) > x implies f(f(z)) < f(z) and f(x) < x implies
f(f(z)) > f(z) = 0 both of which contradict f o f = f. Thus f is the identity
function. We cannot draw the same conclusion when (0, 1) is replaced by [0, 1].
For example f : [0,1] — [0, 1] defined by f(x) = 1 — = shows that f need not
be the identity. However, the proof above does show that fo f = f in this case
also.

Problem 133

a) Let f : {0,1,2..} — {0,1,2...} satisfy f(m? + n?) = f%(m) + f*(n)
Ym,n > 0. Show that either f(n) =0 for all n or f(n) =n for all n

b) Let f : [0, 00) — [0, 00) satisfy f(2 +y%) = f2(2) + f2(y) Va,y > 0. T f
is continuous show that f =0 or f = % or f(x) ==z for all .

a) We have f(0) = 2f2(0). Since f(0) is an integer we get f(0) = 0. Next
f(1) = f2(1) + f2(0) so f(1) = 0 or 1. If f(1) = 1 we prove that f(n) = n for
all. A similar argument shows that if f(1) = 0 then f(n) = 0 for all n. So let
f(1) = 1. Then f(2) = f2(1) + f2(1) = 2. Also f(5) = f2(2) + f?(1) = 5 and
f(4) = f2(2)+f?(0) = 4. Since 3°+42 = 52 we get f(3)+f*(4) = f2(5)+f(0)
and this gives f2(3) = 25 — 16 = 9 so f(3) = 3. 7> + 12 = 5% + 52 we get
f2(7) + f2(1) = f2(5) + f?(5) and this gives f2(7) = 49 and f(7) = 7. Clearly
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F(9) = f(3%) + f(0?) = f2(3) + 0= 9. f(10) = f(3° +1°) = f*(3) + f*(1) = 10
and f(8) = f(2%2 +22) = f2(2) + f2(2) = 8. The equation 6% + 82 = 10? gives
f(6) = 6. Thus f(n) = n for n < 10. The identity (2k + 1)? + (k — 2)? =
(2k — 1) + (k + 2)? gives f(2k + 1) = 2k + 1 if we assume that f(m) = m for
m < n. Similarly (2k+2)24(k—4)% = (2k—2)24 (k+4)? gives f(2k+2) = 2k+2
provided k > 2 if we assume that f(m) = m for m < n. We have proved that
f(n) =n for all n.

b) We have f(0) = 2f2(0) so f(0) = 0 or f(0) = %. First let f(0) =
0. Since f(1) = f2(1) + f2(0) we get f(1) = 0 or 1. We also have f(z?) =
f(z?+0%) = f2(z) + 0 so f(2® +y?) = f(z?) + f(y*) Yz,y > 0. This implies
that f is additive; a simple argument shows f(rz) = rf(x) for every positive
rational r and continuity yields f(xy) = yf(z) Vz,y > 0. Putting 2 = 1 we
get f(y) =y Vy > 0or f(y) =0 Vy > 0. Now let f(0) = . Then f(2?) =
F@? +0%) = f(x) + 4 so f(a? +47) = f(z) — + + f(4°) — 1 ¥,y > 0. This
means f(z% + y?) — 1 = f(2?) — 3 + f(¥*) — 3 Va,y > 0. As above it follows
that the additive function f(¢) — 1 is of the type ct for some constant ¢ and the

2
only possibility is ¢ = 0 so f(z) = % for all x.

Problem 134

Let C be a bounded subset of V' = R" or C™ such that for each x € V there
is a unique point Pz of C' which is closest to it. Show that C is closed and
convex.

It is trivial to see that C is closed: if {c,} C C and ¢, — z then ||z — Px| <
|z — cnl| — 0 so z = Pz € C. Convexity of C requires a lengthy argument and
we divide the proof into the steps S1-S4 as follows:

S1. Ifx € V,A > 0 and ) = 2 + A\(z — Pz) then Pz, = Pz. (Geometrically
x) is a point on the ray from z in the direction of x — Pz. S1 says the point of
C' closest to any point on this ray is Px).

S2. If x € V and y € C then the line segment [y, Px] is closed and convex
and if Qz is the point of [y, Px] closest to z (which exists for any z € V by a
standard result in Functional Analysis) then Pz = Q.

S3.|Pz — Py| < ||z — y|| Yo,y € V.

S4. C' is convex.

We now proceed backwards: suppose we have proved S1-S3. Suppose C' is
not convex. Since C is closed we can find z,y € C such that u = % ¢ C. We
claim that either ||z — Pu| > ||%5%[| or ||y — Pul > ||*5%||. In the contrary
case ||z — y|| < |lz — Pul+ | Pu—y|| < ||%52]|+||%52]| = lz — y|| - This implies
that ||z — Pul| = HL;?’ | NPu —yl| = Hm;yH and that x — Pu = ¢t(Pu — y) for
some ¢t > 0. Taking norms on both sides we get ¢ = 1 so Pu = u contradicting
the fact that u ¢ C. Suppose, for definiteness, that ||z — Pul| > ||%5%]|. Since

z,y € C we get |[Pz — Pul| = ||z — Pul| > ||%5%|| = || — u|| contradicting S3.

Next we prove S3 assuming that S1 and S2 hold. Let Q] be the projection
onto the line segment [u, v]. (This means Q, .z is the point of [a,b] closest to
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z for any z € V). By S2 with y replaced by Py, Px = Q[py, psjx. Similarly
Py = Q[pa,pyy- Since the line segments [Pz, Py] and [Py, Px] are identical
this gives Pr = Qz and Py = Qy where Q = Q[p,,py- To prove S3 we only
have to show that ||Qz — Qy| < ||z — y|| Yx,y € V. The crucial point here is
that Q is projection on a convez set. We note that for 0 < t < 1, ||z — Qz||* <
|z — {tQz + (1 — )Qu}|* = |z — Q|* + (1 —t)2d+2(1 —t) Re < = — Qz, Qu —
Qy > . This gives 0 < (1 — 1) [|Qz — Qy||* + 2Re < = — Qz,Qz — Qy > .
Letting ¢t T 1 we get Re < z — Qx,Qxr — Qy >> 0. Interchanging = and y we
get Re < y — Qu,Qy — Qx >> 0. Equivalently, Re < Qy — y, Qz — Qy >> 0.
Adding thes two inequalities we get Re < x — y + Qy — Qz,Qr — Qy >> 0. In
other words, [|Qz — Qy|* < Re <z —y,Qz — Qy >< ||z — y |Qz — Qy|| and
1Qz — Qll < Jlz — yll

Proof of S2 using S1: If S2 fails then 3 x € V,y € C such that Pz #
Qx where @ is the projection on [y, Pz]. There exists ¢ € (0,1) such that
|z — x| < [lz — Pz| where z; = ty+(1—t)Pz. Thus ||z + 5t (z — Pz) —y|| <
|tz — 1 Pz| = ||z + 5 (x — Px) — Px||. This is a contradiction.

Proof of S1.

Suppose Pxy # Px for some A > 0 where z) = z + A — Pz). We claim
that Px; = Px for some t > 0 implies that Pxs, = Px for 0 < s < t. To see
this we write z, as (1 — 7)z; + 7Pz where 7 = =2, Note that 0 < 7 < 1. If
Pzxs # Px(= Px) then ||zs — Px| > ||zs — v|| for some v € C. But ||z; —v|| <
ot — @l + s — oll < lle — 2]l + llos — Pall = llow — (1= r)ay — 7Pal] +
(1 = 1)z + 7Px — Pz

= 7|2t — Px|| + (1 = 7) ||zt — Pz|| = ||Jx+ — Pz|| which contradicts the fact
that Px; = Px.

Let @ = sup{t > 0 : Px; = Pz}. If @« = oo then Pz, = Pz for all r but
Pzy # Px. Hence a < 0. Clearly Px; = Px for s < o and Pxs; # Px for
s > a. We now prove that Pz, = Pz. For A < a, Pz) = Pxz. Hence, for any
w € C, ||lxx — Px|| < ||z —w|| . Letting A T a we get ||zq — Pz|| < |20 —w||.
This proves that Px) = Px if and only if A < a. Now let D be a closed ball
with center z, (say with radius r) which is disjoint from C. For z € D let
F(z) = zo + m[%‘ — Pz]. If we prove that P is continuous then (since

|lza — Pz|| > r), we see that F' is continuous on D. Also, ||xzq — F(2)|| = r

so F maps D into its boundary. By Schauder’s Fixed Point Theorem there

is a point z in D with F(z) = z which gives z, + m[xa — Pzl = 2
w—P .. .

and hence z, = Halr:‘:—PZIT—I&l-rZ + —por D% This implies that Pz, = Pz,

so Pz = Pz. [We proved above that Pz, = Px for some ¢ > 0 implies that
Pzy; = Pz for 0 < s < t.. This proof shows that Pz, = Pz]. We now get
To + m[aﬁa — Px] = z which can be written as z = z) with A > a.
This contradicts the definition of . Remains to show that P is continuous. If
P is not continuous we can find {x,} converging to x and ¢ > 0 such that
| Pz, — Pz| > € Vn. Now d(z,C) < ||z — Pz,|| < ||z — zu| + ||2n — Pzy| =
|z — zn|| + d(2y,C) — d(z,C). If y is a limit point of {Px,} then we get
d(z,C) < d(z,y) < d(z,C) which implies that y = Pz, contradicting the fact
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that || Pz, — Pz| > € Vn.
Problem 135

In the literature there are two definitions of adjoint of an n X n matrix
A. According to one definition the conjugate transpose of a matrix is called the
adjoint. According to the other definition the (i, j) element of the adjoint matrix
is the co-factor of a; ; : the determinant of the matrix obtained by deleting the
t — th row and the j — th column. Find all matrices for which the definitions
lead to the same adjoint.

Let B be the adjoint according to the first definition and C according to
the second. As is well known CA = AC = (det A)I. If B = C then we get
BA = AB = (det A)I. Since AB is non-negative definite we see that det A > 0.
Note that if det A = 0 then ||Az||> =< BAz,z >= 0 for all z so A is the zero
matrix. Otherwise, det A > 0. Now, det(AB) = (det A)™ det(I) and this gives
|det A]* = (det A)™. If n > 2 this (along with det A > 0) gives det A = 1 and so
AB = BA = 1. Thus A is a unitary matrix with determinant 1. For n > 2 any
unitary matrix with determinant 1 satisfies B = C [ Indeed CA = AC = I and
BA = AB = I together imply B = (] and so does the zero matrix. It remains to
consider the casen = 2. If A = < ch Z > then the condition is < d b ) =

—C a

a ¢ - _ a b
(a _).Thissaysc——bandd—a.ThusA—( - )Withaandb

Q|

b d
arbitrary. Any such 2 x 2 matrix satisfies the condition B = C.

Problem 136

Let B be a bounded set in a Banach space X. Show that the following are
equivalent:

a) B is an open ball

b) for any two points z,y in B there is an open ball V' contained in B and
containing x and y.

a) implies b): take V' = B. Let b) hold. B is clearly open. Let R = sup{r >
0 such that there is an open ball of radius r contained in B}. Let r, T R
and U, = B(x,,m,) C B Vn. Let dy,, be the diameter of U,, U U,,. Claim:
dpm > T+ Tm + ||2n — || - To see this first assume z,, # x,, and consider the
points z,, — A(zy, — x,) and @, + p(z,, — x,) where 0 < A < Hrnr—inrmll and 0 <

w< er—imx\l These points belong to U, UU,, and the distance between them is
|1+ A+ p|||zn — 2| - This number cannot exceed dyp,. Let A — T and

-/n_mmH

p— e to get |14 |€n — Zm|| < dpm. This proves

Tm
iy B P |

the claim when x, # x,,. The claim is trivial when z,, = x;,.
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Let 6, > 0 and choose up,v, € U, U U, with |Ju, —v,|| > rp + 7m +
|€n — Zml|| — dn. Let S, be an open ball such that u,,v, € S, and S, C B.
Then radius of S,, cannot exceed R. Hence ||u,, — v,| < 2R. Hence 7y, + 7 +
|€n — Zml|| —dn < 2R. Since r, T R we see that {z,} is Cauchy. Let x = lim z,,.
We claim that B = B(z, R). Since [ly —z| < R implies |ly — z,| < r, for
n sufficiently large and since B(z,,r,) C B we get B(z, R) C B. Suppose
|ly — z|| > R. Then there is a point w in B(z, R)[C B] such that ||y — w| > 2R.
[ Take w = x + t(x — y) where Tooall ” -l1<t< ”yR H] If y € B then there
is an open ball inside B containing y and w. This ball has radius at most R.
This contradicts the fact that ||y — w|| > 2R. Hence y ¢ B. This proves that B
is contained in the closure of B(z, R). But B is open and hence B C B(z, R).

Problem 137

Show that any (complex) polynomial p whose degree is < n is the sum of
three polynomials whose zeros are all on the real line.

Let f(z chzJ and g(z Zd 2J where p(z Za]zj and c;
j=1

Reaj,d; = Imaj Note that £ < n. Let C' = max{{sup|f( )| -1 <2<
n}, {sup|g(z)|: =1 <z <n}.Let po(2) = 1+ i)Mz2(z —1)(z — 2)...(z —n+1)
where M > 4C. Note that the zeros of py are all real. Let p1(z) = f(2)—Mz(z2—
1)(z—2)...(z—n+1) and p2(z) = i[g(z) — M2(z —1)(z = 2)...(z —=n+1)]. Then
Po+p1+p2 = f+zg = p. Now |[Mz(z —1)(z — 2)...(2 = n+1)] > C at the
points z = —1, 1.3 n — 1. The vaues of Mz(z — 1)(z — 2)...(z —n + 1) at
these points alternate in sign. Also |f(z)| < C and |g(z)| < C at these points.
It follows by intermediate value property that p; and ps both have one zeros
between any two successive points in {—%, %, %, ey — %} These have to be
only zeros because the degrees of these polynomials are n.

Problem 138

Show that any (complex) polynomial p whose degree is < n is the sum of
three polynomials whose zeros are all on the unit cricle {z : |z| = 1}.

Let g(z) = (2 — z)"p(ﬁ__li) Then ¢ is a polynomial of degree at most n. By
Problem 137 we can write g as go + q1 + g2 where ¢;,7 = 0,1, 2 are polynomials
of degree at most n whose roots are all real and whose sum is ¢. Let p;(z) =
; +1 _
i~"(z—1)"q ((Z1 z)) j=0,1,2.

Remark: it can be shown that 22 + 4iz 4+ 1 cannot be written as the sum of
two polynomials of degree at most 2 whose roots are all on the unit circle.

Problem 139
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Let H be a Hilbert space and {z1,z3,...,2,} a finite subset of H. Find

explicitly the point = in H for which Z |z — acj||2 is minimum.
j=1

The answer is © = W To prove this consider H" = Hx H x...x H
(n factors) as a Hilbert space in a natural way: < (1,2, ..., Zn), (Y1, Y2y s Yn) >=

Z < z;y; > . Let C be the diagonal of H" (C' = {(z,z,...,x) : € H}). There
j=1
is a point (x,z,...,x) in C that is closest to (x1, 3, ...,2,). This point is char-

acterized by the fact that (z; — x, 22 — x, ..., 2, — x) is orthogonal to D. Hence
n

Z <zj—x,y>=0forall y € H. This implies < Zt=f2ketn gy 5= () for
j=1
all y € H. Thus ¢ = £t don

n

Problem 140

Let H and K be Hilbert spaces, y1,¥2,.--,yn € K and Ay, As, ..., A, be

bounded operators from H to K. Show that Z |A;z — yjH2 is minimized at
j=1

x = xzg if and only if ZA;AJ‘:,EO = ZA;yj. [n=1,A4; = I reduces this to

j=1 j=1

n
previous problem. If the positive operator Z A3 Aj is invertible then there is a
j=1
unique xo].

Define T : H — K" be T(z) = (4iz, Asz, ..., Apx). The distance from
(y1,Y2s --»Yn) to T(H) is minimized at T'(zo) and hence (y1, Y2, ..., ¥n) — Txo is

n n
orthogonal to Tz for each z. This gives ZA;ijo = Z AZy;. Converse also
j=1 j=1

holds.

Problem 141

Consider the inequality ‘ ﬁ - ﬁH < ||z — y|| where ||z|| > 1 and |jy|| > 1.

Is the inequality true in any inner product space space? Is it true in any normed
linear space?

Yes. If C the closed unit ball then ‘

W_xH = llefl =1 < flzll = flufl <

||z — u|| whenever u € C, so 77 is a point of best approximation (i.e. projection)
of z onto C. In the case of an inner product space we have ||z|| — |Ju|| < ||z — u]|
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unless © = A\(u — z) for some A > 0 and this gives u = ”TT” Now S3 in Problem

134 above completes the proof. Now consider the points (3,3) and (1,1) in

(3:3) (L1
132 IOl
L) — @D =2and ||, 3)| - |1(1,1)] = %. Thus the inequality does not
3 3 272 2
hold in general.
[Remark: if the inequality holds with y = —x then ||z|| > 1 and ||y|| > 1.

R? under the norm ||(z,y)|| = max{|z|,|y|}. We have

Also, a simple argument using triangle inequality show that if ||z|| > 1 ,|ly|| > 1
and either ||z|| > 2 or ||y|| > 2 then the inequality holds. In Studia Math. vol.
25, 1965, p.271-276 J J Schaffer has shown that the inequality holds only in
Hilbert spaces and some two dimensional spaces. In particular the inequality
characterizes Hilbert spaces in spaces of dimension greater than 2].

Problem 142

Let k be a positive integer and A, b be n x n matrices with AB¥ — B¥A = B.
Show that B is nilpotent.

We claim that AB*'* — B¥'* A = 20 B’ ~Dk+1 for all non-negative integers
§. For j = 0 this is the hypothesis. If it holds for j then we have B*'*AB%'% —
BY"k A = 21 BT =Dk+1 gnq ABY TR _BYk ABYk = 21 p'T -Dk+1 Adding
these two equations we get ABY "k _ B2k 4 = 2i+1 BT =Dk+1 Thge in-
9i B2/ —1)k+1 ‘ <

duction argument is complete and the claim is proved. Now, ‘
HAB?”’k ‘+ ‘B”A‘ < 2| 4| HBZ’"k ‘ < 2| A| HB(Qj—l)HlH [BE=1|| . 1f B Dk

is not the zero matrix then we get 27 < 2|[|A| ||[B*~!|| for all j > 1 which is a
contradiction.

Problem 143

Let X be a n.ls. and define S, as {y € X : |z +y|”* = ||z||* + ||y[|*}. Show
that the following are equivalent:

i) X is an inner product space

ii) for any = € X, any y € S, and any a € R we also have ay € S,..

If i) holds then S, = {y :< z,y >= 0} so ii) is obvious. Let ii) hold. We
claim that for any x € X and y € X there exists a real number a such that
x € Sazty. Note that we can take a = 0 if x = 0. For  # 0 fixed consider

the continuous function f(£) = ||(1 + t)z + y||> — ||tz + y||* — |z]|* . We can also
write f() as ([[(1+ )z +yll — [tz + y ) (I(1 + )z +y[| + [tz + yl) — |l 1t
t >0 then ||(1+t)z +y|| — [tz + y|| = H(l +t)z + %Hy + %HyH — |tz +y|| =

o+ sy +[[tm + s~ e+l and [t + ]| - e + | < ||
0 as t — oo. Hence |[(1+t)z+y| — ||tz +y|| — |lz|| as t — co. Of course,

B
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|1+ t)z+y| + ||tz +y|]| — oo as t — oo. It follows that f(¢t) — oo as t —
0. For t < —1, |(1+ )z +y|| — |tz +yl = —H:H%Hy‘ + ”terl%ty’ -

‘ so we see that f(t) —» —oo

‘tw+ Ty ‘ - ||t:c+y||’ < H%Hy
as t — —oo. Hence there is a real number ¢ such that f(t) = 0. This means
1(1+8)z +y||* = [tz + y|* + |z]|* . We can take a = t and so have proved our
claim. It now follows from ii) that —tz, (1 — t)z and —(1 +¢)z are all in Sizyy.
In other words, ||y||> = ||—tz|> + ||tz + y|*,

10— ) + 2+ g = (1 = DalP+ [tz + g and |—(1 + )z + ta + y] =
|—(1+t)z||* + ||tz + y||*. Adding the last two equations we get ||z + y||* +
o — gl = (1= ) a]]* + (1 + £)2 ) + 2t + ] . Since [tz + y|* = |y]|* -
2 o] we get 1z + ylI*+ 1z — olI” = 201+£2) |zl*+2 g =22 2]]* = 2 2l +
2||yll* . Thus the parallelogram law holds in X.

[tz + yl| . Since

Problem 144

Let X, Y, Z be random variables on a probability space with a X +38Y +vZ 4
U whenever the real numbers o, 3,7 satisfy o2 + 82 + 42 = 1, where U has

uniform distribution on (—1,1). | £ stands for "equal in distribution"]. Show
that X2 +Y?2 + Z2? = 1 almost surely.

It follows that the following random variables have uniform distribution on
(-1,1) : X,Y, Z, X\g,xfy Let V = X2+ Y2+ Z2 We show that EV = 1
and EV? = 1. These two facts imply that V is almost surely constant and the
constant must be 1, thus completing the proof. It is obvious that EV = 1

because EU? = % The fact that EV? = 1 requires some computations: EX* =
Byt =1 0= BN EXV _opxsy 4 opxY?

E(X+Y)' _ EX*44EX3Y46EX2Y24H4EXY®+EY? _ EX‘46EX2Y24+EY? _ E+6EX’Y?+1
2 = 1 = 7 = 1 :
Li6EX?Y2 41

Since X—\;%Y 2 U we have M = % Thus % = *———= which implies
EX?Y? = Similarly EZ2Y2 =L and EX?Z? = L. Now E(X?+Y?+
2(% :

7 1) = §5+1—2<3> a(h) —2(1 2
Problem 145

Let f :[0,1] — [0, 00) be a continuously differentiable function. Let L be the
length of the graph of f and A the area under the graph. Show that A+L > 7 /4.

Let g(x) = f( ) — f(1) + L. Then g(1) = L and the length of the graph

of g (which is / V14 ( )2dx) is also L. We claim that /1 V2dx >

V1—22 +xg’(x) and that equality holds if and only if (1—22)(1+(¢'(x))?) = 1.
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1 1
Once this is proved we get L > /\/1 — z2dx + /mg’(m)dx =7/4+ g(1) —
0 0

1

1
/g(m)dx =x/4+g(1) — /f(a:)da: +f()—-L=xn/4—A+ fQ1) > /4. I
0 0
equality holds here then f(1) =0 and /1 + (¢'(2))?dz > V1 — 2% + z¢'(x) for
all  which implies (1 —22)(1+(¢'(x))?) = 1 for all z. This gives (¢'(7))? = 1f12

Vz. Equivalently(f'(z))? = 2 Va. By continuity of the derivative we get

1—x2
f(z) = 7 for all z or fl(z) = — 7=z for all z. Thus f)=ctv1—22
where ¢ is a constant (and = sign is independent of ). Since f(1) = 0 we must
have ¢ = 0 and since f is given to be non-negative we have f(z) = V1 — 2?2
Va. However, for this function A = 7/4 so A+ L > w/4. Tt follows that
A+ L > 7/4. To complete the proof we have to show that /1 + ¢ > /1T — s++/ts
for t > 0 and s € [0, 1] with equality if and only if (1+¢)(1 —s) = 1. Note that
(Vi+t—v1—=5)2=(1-+/(1+1t)(1—5))%+st > st and equality holds if and

only if /(14 t)(1 —s) =1 as required.

Problem 146

Show that a random variable X has a symmetric distribution if and only if
o0

/P{|X—t| < a}dt = a for all a > 0.
0

o}

Note that if F is the distribution function of X then /[F(t+a)—F(t—a)]dt =

0
e oo

/P{t—a<X §t+a}dt:/P{\X—t| < a}dt for all a > 0 since F' has only
0

0
countable number of discontinuities. Now
T

Tha T—a T+a a
O/[j(t—ka)—F(t—a)]dt: a/F(t)dt—_/aF(t)dt :T/a zz(t)dt—_/ap(t)dt_)

2a — /F(t)dt as T — oo. It remains only to show that /F(t)dt = q for all

a > (_) if and only if X has a symmetric distribution. I% the equation holds
then differentiation w.r.t a yields F(a) — F(—a) = 1 at all but countable many
points; in other words P{—X < —a} = P{X < —a} at all but countable

many points. Clearly this implies that X 4 _X. Conversely if X £ _X then
a 0 a a a

/ Ft)dt = / F(t)dt+ 0/ Ft)dt = 0/ F(—t)di+ O/ F(t)dt = O/ [F(8)+F(—t)]dt =

—a —a
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a

[1 — P{X = t}]dt = a for all @ > 0. More generally X has a distribution that

0

is symmetric about a real number b if and only if /P{|X —t| < a}dt = a for
b
all @ > 0. [ This follows by a simple change of variable].
Problem 147

Show that R™ cannot be written as the union of a family {D; : ¢ € I} of
closed balls such that D; N D; = 0 for i # j.

The interiors of the given disks contain points with rational coordinates.
Since these interiors are disjoint it follows that the given collection is countable.
Let this collection be re-written as { D1, Da, ...}. The intersection of any two of
these disks has atmost one point. Points that belong to two of thse disks form
a countable set, say {x1,x2,...}. There is a line segment v with one end in D,
and the other end in D, containing none of the points {z,}. [ Fix y in D; and
note that there are uncountable many line segments from this point to points

in Dy such that they have no common points except y]. Let A = ~\ U DO.

Since 7 contains a point on dD; it follows that A # (). A is clearly closed Slnce

R™ = U D,, and ~ intersects each D,, in at most two points we see that A is
n=1
at most countable. If A has an isolated point a then there is an open segment
o0

J in 7 containing no other point of A so J C U D?. By connectedness J C D2

n=1

for some n. But a € Janda € A C (U DY)c. This contradiction shows that

o oo

A is perfect, hence uncountable. Since A C R" = U D, and A C (U DY)e
n=1 n=1

we see that every point of A is in the boundary of some D,, and belongs to ~.

The segment v can have at most two points of the boundary of any D,, and this
contradicts the fact that A is uncountable.

Problem 148*

Find all continuous functions f : R — R such that f(z+y) = P(f(x), f(y))
for some polynomial P in two variables with real coefficients.

Since f(z) = P(f(z), f(0)) it follows that the range of f is contained in

the set of zeros of the polynomial p(t) = P(t, f(0)) — t. This forces f to be a
constant unless p(x) = 0. Also, P(f(z), f(y)) = P(f(y), f(z)) for all 2.y which
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implies that P(u,v) = P(v,u) for all u,v € f(R). Since P(u,v) — P(v,u) is a
polynomial in u vanishing throughout an open interval (if f is not a constant) for
fixed v € f(R) it must be identically 0; repeating this argument with the second
variable we see that P(u,v) = P(v,u) for all u,v € R. Since P(z, f(0)) = « and
P(f(0),y) = y this forces P(u,v) to be a(u + v) + buv + ¢ for some constants

P be of degree 17]. Now f(z +y) = a(f(z) + f(v)) + bf(z)f(y) + ¢ for all
z,y. Put y = 0 to get f(x) = af(x) + bf(x)f(0) + c+ af(0). If f is not a
constant then 1 = a + bf(0) and ¢ + af(0) = 0; we get f(z +y) = (1 —
bf(0))(f(x) + f(y) +bf(x)f(y) — £(0) + bf2(0) for all z,y. If b = 0 this gives
flz+1vy) = f(z)+ f(y) — f(0) which implies f(z) — f(0) = ax for some o € R.
Thus, f(z) = az + f(0). If b # 0 then f(0) = 15%. Let g(x) = bf(x) + a. Then

gz +y) = g(x)g(y). Since g is not identically O it has no zeros. It follows that
g(z) = e for some real number 8 and we get f(z) = eﬁTTf“ Hence the only

possibilities are f(z) = az + b and f(z) = ae®® + b.
Problem 149

Chracterize all C* functions f from an open interval I in R into R such that f
satisfies a differential equation of the type " +g, 1 f* V4. 4 g1f +gof =0
where the gs are all continuous.

If f and its first (n — 1) derivates vanish at some point ¢ then f(™(t) = 0
by the differential equation and this forces f to be identically 0 by a stan-
dard result in theory of ODE’s. If this is not the case we can define gx(z) =

_ f 9 (@)™ (2)
{f@ P+ (@)} 4. +{f ("D (2)}?]

so that the given equation holds.

Problem 150

N

Let c1, ca, ..., ¢ be distinct non-zero complex numbers. Show that Z H o T
J
k=1 j#k
(=p™+t
ci1ca...CcN
N N
Let f(z) = H (2) as Z Fan for some complex con-
k=1 k=1
stants ai,asg, ...,an [ Proof: induction on N]. Now a; = lim f(2)[z — ¢x] =
Z—Cp
N
1 1 _ a
H o Hence H oo = g
j#k k=1 k=1

Problem 151
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Let d; and ds be two metrics on a set X such that any open ball w.r.t one
contains an open ball w.r.t. the other. Does it follow that the metrics are
equivalent ( in the sense they have the same open sets)?

No! Let X = R,dy(z,y) = |z —y|,d2(x,y) = |z —y| if x,y € [0,00) or
z,y € (—00,0) and da(z,y) = |[x—y| + 1 if x € [0,00) and y € (—00,0) or
y € [0,00) and © € (—00,0). Writing By and Bs for open balls w.r.t d; and
dy we have Ba(x,r) C Bi(z,r) and, for x # 0, Bi(x,0) C Ba(z,r) if we define
0 as min{r, |z|}. Let § = /2 if x = 0. Then B1(d,d) C Ba(z,r). The interval
[0,1) = B3(0,1) is open w.r.t. dy but not w.r.t. dj.

Problem 152

o0
Let Z an be a convergent series of positive terms. If b, T 1 in such a way

n=1

that [log(n)][1 — b,] is bounded show that Z aln < 0.

n=1

Z abn < 24 Z(an)lfA/log(")(n%)A/ log(n) for k sufficiently large (because
n=k n==k

by > 1 — A/ log(n) and (&)3/1960) = ¢=22) where A = sup{[log(n)][1 — bu]}.

n

Now (a)!=4/leg(n) (g)A/loe(n) < [1 — A/log(n)]a+[A/log(n)]B for any positive

numbers « and S by convavity of logarithm. Hence Z aln < 28 Z{[l -
n=k n=~k
A/log(n)]an + [A/log(n)] -5} < oc.

Problem 153

Let P and @ be orthogonal projections on finite dimensional complex Hilbert
space H. Show that P(Q is an orthogonal projection if and only if all eigen values
of P+ @ belong to {0} U [1, 00).

PQ is a projection if and only if PQ) = QP. Suppose this is the case. Then
P?—Q*=(P+Q)(P-Q)=(P-Q)(P+Q) Let (P+Q)z = \z,z # 0.
We have (P - Q)z = (P2 - Q¥)z=(P-Q)(P+Q)z = AP - Q)x. If A\ # 1
this gives (P — Q)z = 0 or Px = Qx so Pz = Qz = (A\/2)z. But P and Q are
idempotent so A =0 or A = 2. Thus X € {0,1,2} C {0} U[1,00).

Now suppose all eigen values of (P+Q) belong to {0}U[1, 00). Let (P+Q)z =
Az,z # 0. Then A(Px — Qz) = (P - Q)(P+Q)x = (P - QP+ PQ — Q)z and
(PQ-QP)z = (A\—1)(Pz—Qz). Now (P+Q)(P-Q)z = (P—PQ+QP—-Q)z =
(P-Q)x—(A—=1)(Px—Qz) = (2—A)(Pz—Qx). If Px # Q then z is an eigen
vector of (P4 Q) with eigen value 2 — . In that case either A =2 or 2— X\ > 1,
by hypothesis. Thus, A = 2 or A < 1. But if A # 0 then we also have A > 1
by hypothesis so A € {0, 1,2}. In all these cases we claim that PQx = QPx. If
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A=1then (PQ—QP)x = (A—1)(Px—Qx) =0.If A =2 then Px+ Qx = 2z.
Thus 2 ||z]| < ||Pz|| + [|Qz|| < |lz|| + ||=]| = 2||=]| so equality holds throughout
and Pz = c¢Qx with ¢ > 0. But then 2z = (14¢)Qx and ﬁ must be 0 or 1. This
forces ¢ to be 1 and we get Px = Qz = x. So PQx = QPx = x. Let A = 0. Then
Pz = —Qz. This implies < Px,z >= — < Qx,x > which forces both sides to
be 0. Thus ||Pz|* = |Qz|* = 0 and Pz = Qz = 0 and PQz = QPz = 0.
Of course, Pxr = Qx then also PQx = QPx. Thus in all cases PQx = QPzx
whenever x is an eigen vector of (P 4 Q). But eigen vectors of P + @) span the
entire space H. [ P + @ is non-negative definite, hence diagonalizable]. Hence

PQ =QP.
Problem 154

Let ©Q be an open connected realtively compact subset of a metric space
(X,d). Assume 9Q # (. Let f : © — Q be a continuous map such that its range
f(€) is open. Show that d(f(zo),0) = d(xg, ) for some xg € Q.

Let g(x) = d(f(x),00) — d(x,09Q). It suffices to show that g takes both

positive and negative values on Q. Let v € Q with d(v, 0f2) = max{d(z,09Q) : z €
Q}. Clearly v € Q and g(v) < 0. Suppose f(Q) = Q. Let f(w) = v with w € Q.
Then g(w) = d(f(w),00N) — d(w,IN) = d(v,IN) — d(w, Q) > 0. If () # Q
then there a point exists y € QNIf(Q) and, clearly, y ¢ f(Q). [fQNIf(Q) =0
then f(€2) has no boundary points in € and so it is open and closed in . But
Q is connected so f(Q) = Q or () = 0, a contradiction]. Since y € 9f(Q)
there exists a sequence {y,} C Q such that f(y,) — y. There is a subsequence

Yn; converging to some point u in Q. If u € Q then y = lim f(y,,) = f(u) €
f() contradicting the fact that y ¢ f(€2). Hence u € 99Q. Now d(y,§2) > 0
because €2 is open. Thus d(f(yn,), Q) > 3d(y,Q) for j sufficiently large. Since
d(Yn,;, Q) — d(u,0Q) = 0it folows that g(yn,;) = d(f(yn,), 0Q)—d(yn,,082) > 0
for j sufficiently large.

Problem 155

Let P and @ be projections on C™. If Tr(PQPQ) = Tr(PQ) show that PQ
is a projection. [T'r stands for trace].

We prove that Tr[{PQ — (PQ)*H(PQ) — (PQ)*}*] = 0. This implies that
PQ = (PQ)* so PQ = Q*P* = QP and hence PQ is a projection. Now
g‘[{PQQ]— (PR H(PQ) — (PQ)}] = Tr[PRQR™P" — PQPQ — Q"P*"PQ +

*P*P
=Tr[PQQP—-PQPQ—-QPPQ+QPPQ]=Tr(PQ)-Tr(PQ)—Tr(PQ)+
TR(PQ)) = 0

Problem 156

72



Let F : C* — C"™ be a differentiable map such that ||F(z)| < ||z| for all
x € C™. Show that F is linear.
[ Differentiability means existence of a linear map L, : C* — C" ( for any

x € C") such that ”F(”h)ﬂ,ﬂ‘(m)_“h” — 0 as [[h]| — 0].

Let g(z) = F(a+ zb),z € C with a,b € C" fixed. g is differentable. We
claim that g(z) = A(a,b) + zu(a, b), for some A(a,b), u(a,b) € C. Assuming this
we get F(zb) = A(0,b) + zu(0,b) and we get A(0,b) = 0 by putting z = 0. Thus
F(2b) = zu(0,b). In particular F(b) = u(0,b) so F(zb) = zF(b). Also F(a) =
g(0) = X(0,b) + 01(0,b) and hence F(a + zb) = F(a) + zu(a, b). Multiplying by
1 and letting |z| — oo we get F(b) = lignF(g +b) = u(a,b). Thus F(a+ zb) =
F(a)+2zF(b) which completes the proof. To prove the claim let h(z) = g(2)—g(0)
and ¢ = h(z + fw) — h(z) — Eh(w) where z,&,w € C are fixed. Consider the
entire function z —< h(z),¢ > . It follows from hypothesis that |< h(u),{ >| <
a+ B |ul for all w € C. Hence < h(u),{ >= cu + d for some constants ¢ and d.
Now < (,( >=< h(z + &w) — h(z) — Eh(w),( >= c(z 4+ w) +d — (cz + d) —
&(cw +d) = 0. We have proved that h(z +&w) — h(z) — Eh(w) = 0 for all choices
of z,&,w € C which proves that h is linear. Hence g(z) = g(0) + h(2) is of the
type A(a,b) + (e, b).

Problem 157

If T and S are commuting bounded operators on a complex Banach space
X and T # S show that d(o(T),0(S)) < ||T — S|

We prove the stronger result that for any A € o(T) there exists p € o(S5)
such that |A—pu| < [T = S||. Let V.=1— A —T)\ - S)"L. [If XA € o(9)
there is nothing to prove]. Then V = (AI =S)(A\[=S) L= (M -T)(A\[-S)"! =
(T—S)(A[—S)~t. We claim that that if the result is false then the spectral radius
of (AT — )1 is less than HTiiSH Once this is proved we can conclude (from the
fact that T'S = ST') that spectral radius of V' does not exceed the product of the
spectral radii of (T'— S) and (A — S)~! which is less than 1. This means [ — V
is invertible and hence (Al — T') is invertible which is a contradiction. To prove
the claim note that |A — u| > ||T — S| for all 4 € o(S) by assumption. If the
claim is false then there exists 7 such that |7| > m and 7 € o((AI — S)71).
It follows that I — 7(AI — S) is not invertible. Hence = A — 1 € ¢(S). This
implies that [A — p| > ||T'— S| which means 1 > ||T'— S|/, a contradiction.

Problem 158

If A and B are projections on C" show that the following operators have the

same range:
AB — BA,ABA — BAB, (AB)? — (BA)2.

Let C=A+B—-1,D=A—B. Then DC = A4+ AB—A—-BA-B?>+B =
AB — BA. Also DC?* = (A— B)(A+B+1—-2A—-2B+ AB+ BA) = (A —
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B)(I—A—-B+AB+ BA) = ABA— BAB and DC? = (AB)? — (BA)?. Thus,
the ranges of the three operators AB — BA, ABA — BAB, (AB)? — (BA)? are
the images under D of the ranges of C,C? and C3. However C is self-adjoint
and hence diagonalizable. It follows from this that the ranges of C,C? and C3
are all the same.

Problem 159
Prove or disprove the following:
if f: R — R is continuous then there exists a € R such that |f(a)| —|f(x)| <

|a — x| for all z # a.

True! Since |f(z)| + |z| /2 — o0 as |z] — oo it attains its minimum value
at some point a. For any x # a we have |f(x)| + |z| /2 > |f(a)| + |a] /2 and so
f(a)] = f(@)] < |2| /2= |a] /2 < 952 < Ja — .

Problem 160

Let A and B be n x n matricies with real entries such that A2 + B2 =
AB — BA. If AB — BA is invertible show that 4 divides n.

We have (A +iB)(A—iB) = A?> + B2 +iBA —iAB = (1 —i)(AB — BA).
Hence (1 — i)™ det(AB — BA) > 0. In particular (1 —¢)™ is a real number. Thus
27/2¢=nm/4 i5 veal. Therefore sin(nr/4) = 0. QED

Problem 161

Let f(z) =log(l+4x) for > 0. Let f1 = f, fut1 = fofn (n > 1). Show that
fn(x) — 00 as n — oo for each x and find the precise rate at which f,(z) — oo.

We claim that nf,(x) — 3—4"_”2 We use the inequalities f—_& <log(l+=z) <

x+37$—a:2 YV € (0,00). [For the right hand inequality consider the cases z < 1 and

x > 1 separately. For z > 1 we have z < %] Let ap = ¥, any1 = f(ay) for

n > 0. Then {a, } is decreasing sequence of positive numbers. Since a1 > GQ“J"FLQ
1 1,1 ; ; 1 ny 1 _n, g n__ xt2

we get - < o-+s- By iteration we get ar St =5+t =n%. Hence

: : 2x 2a 1 an+2—a2 1 1 a

hn%mfnan > - Now ap41 < an+2iaﬁ and o > =+l >

1 1 _ ag : : 1 l—ag 1 n—x n o__ nr—z?42n

s ta— 9 By iteration o 2 (n==%) + = (N E)+2 = o . Hence

2z : 2z
na, < oy ) and limsupna, < ="

n

Problem 162
Let P and @ be projections onto closed subspaces M and N of a Hilbert

space H. Find a necessary and sufficient condition on M and N for PQ to be a
projection.
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The condition is: M N (M N N)+ and NN (M N N)* are orthogonal to each
other. If PQ is a projection then PQ = QP. Let x € M N (M N N)* and
y € NN(MNN)*. Since PQ is the projection on M NN, we have PQz = 0 and
QPzx = 0. Thus, together with PQ = QP gives Qz = 0 and Py = 0,i.e. x € N+
and y € M~*. Since € N+ and y € N we get < z,y >= 0. This proves the
necessity of the condition. Now suppose M N (M N N)* and NN (M NN)* are
orthogonal to each other. Let z € H. We can write x as x1 4+ x2 + x3 + x4 where
T1€EMNN,zoe MNNt 23 e NN M and z4 € (M—l—N)l. This is because
the spaces M NN, MN(MNN)*+ and NN(MNN)* are orthogonal to each other
and their sum is M + N. We have PQz; = QPx, = 1 and PQxz4 = QPxz4 = 0.
Also PQzo = QPxy = PQx3s = QPx3 = 0. Thus PQ = QP and hence PQ is a
projection.

Problem 163

I:et f,lg :[0,1] — R be continilous. 1If /fg :1 0 shczvv that (O/fQ)({fQ) >
A £ fo) Atso show that ([¢2)( [ 02+ ([ ) [0 = ai( [ 1 [
0 0 0 0 0 0 0 0

Normalization reduces the proof of the first inequlaity to the case / 2=
0

1
/ g® = 1. Since {f, g} is orthonormal we can apply Bessel’s inequlaity to the
0

1 1 1
constant function 1 to get ( / / g)? < 1, This and the inequality [( / )+
0 0

9)?)? / /19 gwe4/>< g)2§[(/f)2+(/19)2]2ﬁ(/1f)2+

g)? < 1 which gives the first inequality. for the second inequality we cannot

1 1
/f)2 /9)2
assume that /f2 = /g2 =1. Let a = 01 and b = 0

° [r s
0

0
that %—l—% > 4. If we show that a+b < 1 it would follow that %—F% > %—!—L

(

O\H

(

o o~

—

1

. We have to show

4
e

1—a

gl\/

since a(1 — a) attains its maximum value on [0,1] at the point a = 3. For

()



f and g

( f2)1/2 ( 92)1/2

apply Bessel’s inequlaity to the constant function 1.

form an orthonormal set

inequality a + b < 1 note that

Problem 164

Let P and @ be projections on C™. Show that any eigen value of PQ + QP
is > —1/4. Is —1/4 attained?

0<(P+Q—-1i1?=P+Q+3iI+PQ+QP—-P—-Qso PQ+QP > —1/41.

Hence any eigen value of PQ + QP is > —1/4. Take P = ( é 8 ) Q=
1 V3 . . 2 V3
1 _ -1
o ( /3 3 > to show that —1/4 is attained. Indeed, PQ+QP = ; V3 0 )

and eigen values of this matrix are —1/4 and 3/4.
Problem 165

Let A be an n x n complex matrix such that A2 = 0. Show that R(A+ A*) =
R(A) + R(A*) where R(.) is the range of (.).

Let N(.) be the kernel of (.). By hypothesis, R(A) C N(A). If y € R(A) +

R(A*) then y = Au + A*v and we can decompose u — v as x1 + xo where z; €
R(A),z2 € N(A*). (This is because R(A) = (N(A*))*). Note that z; € N(A)
because R(A) C N(A). Consider w = v — x1 = x2 + v. We have (A + A")w =
Aw+ A*w = A(u — 1) + A* (22 +v) = Au — 0+ 0+ A*v = y. This completes
the proof.

Problem 166

Let f € C[0,1] and f(1) = 0. Show that there exists a € (0,1] with f(a) =

/ f@)da.

0
Let g(x) = e_”/f(x)da?. Then ¢'(x) = e *f(z) — e‘”/f(x)da:. Suffices
0 0

to show that there exists a € (0,1] with ¢’(a) = 0. If no such a exists then
either g is decreasing on (0,1) or increasing there. Let h = g?. Then h is
increasing (because g > ¢(0) = 0 if ¢ > 0 on (0,1) and g < ¢(0) = 0 if
¢ < 0on (0,1) so that, in either case, 2g¢’ > 0) but h'(1) = 2¢(1)g'(1) =
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1 1 1

[Qefl/f(x)dx] [eflf(l)—efl/f(x)dx] = —26*2[/f(x)d:c]2 < 0 where we used

0 0 0
1

the fact that f(1) = 0 and there would be nothing to prove if /f(x)dz =0.
0

Problem 167

- n 2k \ n 2k n—2k .
Provethatz<k><k>—z (2k><k>3 for any posi-

k=0 k<n/2
tive integer n.

Consider the coefficient of 2™ in the polynomial (1+ 3z +22)". We have (1+

3¢+ 22)" = kg ( . ) (14 22)*(3z)"* = ;) ( . ) (&;)n-ké0 ( ’; )x%

The coefficient of 2™ in this is the right side of the identity we are required to
n

prove. Now, (1+3z+22)" = [(1 +2)? +2]" = Z < Z ) (14 2)2kgn=F
k=0

n n 2k U n n 2%
— n—k 7 : n;
kz()(k)x Z( j )x and the coefficient of « 1sZ(k>< A
= =0 k=0
the left side of the identity.
Problem 168

Let f,g : [0,1] — R be continuous. Prove that there exists a € (0,1) such
1 a 1 a
that /f(:v)da:/a:g(;v)dx = /g(x)d;v/xf(x)dx
0 0 0 0

1

1
Case 1: /f(x)dac # 0 # /g(x)dx. Let h(z) = f(f) - % where a =

0
1 1 z 1
/f(x)d;z:,b = /g(a:)dz. Let H(z) = /th( )dt. Claim: H(1 +/ @) dz = 0.
0 0 0
1 1 1
To see this note that / = —-H(x) |(1)+/de =_ +/h
0

—H(1). This proves the claim and we conclude that H cannot be positive
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throughout (0,1) or negatlve throughout (0,1). Hence H(a) = 0 for some

a a

/ x)dx.

x 1

Case 2: /f Ydx = 0. Let H(z :/ t)dt. Wehave/H(x
0 0

€ (0,1) which gives /f dx/xg

O\H
Q

jsW
2
Il
|
8=
=
8
o~
+

1
/@dm = —H(1) + /f(:c)dw = —H(1). As in the previuos case we con-

0
1 a

clude that H(a) = 0 for some a € (0,1) which gives /f(x)dx/:rg(a:)d:c =

0
a

0
1 1
/g(m)dw/xf(x)dw = 0. Similar argument works when /f(x)dx =0.
0 0 0

Problem 169

Prove or disprove that if A is set of (Lebesgue) measure 0 in R and € > 0
then there exist intervals I, Io, ... such that A C U I, and the length of I,, does

n
not exceed €/2" for any n.

False! If this is true then inf{Z(diam(Un)p : U,, open and A C UI”} <

n=1
[eS)

Z(e/ 2M)P = P Z (1/2™)? — 0 as € — 0 showing that the Hausdorff dimension

n=1 =1
of Ais 0. The Cantor set is an example of a set of measure 0 whose Housdorff

. . log 2 - ..
dimension (j223) is positive.

Problem 170

Show that there is no continuous function f : (0.c0) — R such that f(x) =
0< f(2z) #0.

Let A = {x: f(z) = 0}. Then A° = 2A. A is a closed subset of (0.00) and
hence A¢ = 2A is open. This implies that A is open and closed on the connected
set (0.00). So A = & or A = (0.00). But we cannot have A° = 2A in these
cases.

Problem 171

x+1
Prove that x/ sin(t?)dt < 1 for all z > 1.

T
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r+1 r+1

Integrating by parts / sin(t?)dt = — / 2 [(—2t) sin(t?)]dt = — 5 cos(t?)[2 T —

x+1 x+1

1 1 1 1 1 1 1 1 1
/Wcog(ﬁ)dKW*ﬂ*/Wdt:m+ﬂ+@—m=;-

x

Problem 172

Let A be a compact subset of R and P(A) the collection of all non-constant
polynomials with real coefficients with leading coefficient 1. [ Leading coefficient
of p(x) is the coefficient of the highest power z in p]. Let ||p|| be sup{|p(x)| :
z e A}

a) Show that if there exists p € P(A) with ||p|| < 2 then there exists p € P(A)
with ||p|| < 1

b) Show that if A = [—2,2] then there is no p € P(A) with ||p|| < 2.

a) Let Sp(z) = p*(z) — & [|Ip||*. S maps P(A) into itself and ||Sp| < 3 ||p||”.

. . 2" .
Iteration gives ||S*p|| < = [[p|© — 0 as k — oo if ||p|| < 2. Hence ||S*p|| < 1

for k sufficiently large.

b) Suppose there exists p; € P(A) with ||p1]| < 2. By a) there exists p € P(A)
with ||p|| < 1. We claim the following:

i) there exists a map T : P(A) — P(A) such that ||T¢| < ||¢] and if
¢ € P(A) has degree 2k then T¢ has degree k

ii) there exists h € P(A) such that deg(h) = 2™ for some n and ||h| < 2.
Note that T"h would then be an element of P(A) with norm less than 2. This is
a contradiction because T™h has degree 1. [z + ¢ has norm 2+ |c|]. It reamins to
construct T and h. Let T'¢(z) = ¢o(z + 2) where ¢ (2?) = ¢, (z) = %
[ ¢, is a polynomial in 22 and hence ¢, € P(A) exists]. This proves i). For ii)
let h(z) = 2(g(z))! where g = T™p and degp = 2™q, ¢ odd and [ is determined
by the fact ¢[(2" —1) so ] = 2"q_1 is an integer. Note that deg(h) = gl +1 = 2™.
Since ||g|| < |lp|l < 1 we have ||h| < 2.

Problem 173

Let A be a discrete subset of R. [ie. a € A = 3§ > 0 such that
AnN(a—9,a+6) ={a)]. Can the closure of A be uncountable?

Yes! For each of the intervals removed in the construction of Cantor set pick
a sequence increasing to the right end point and a sequence decresing to the left
end point on that interval. Put all these sequences together to get a discrete
set whose limit points include the end points of the intervals removed in the
construction of Cantor set. The set of all these end ponts is the set of all finite

N
sum Z $# with N > 1,ajs € {0,2}. It follows that every point of the Cantor
1

set belzongs to the closure of A.
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Problem 174

Prove Banach’s Theorem that any isometric map 7' from one normed linear
X onto another normed linear Y with 7'(0) = 0 is linear.

Remark: the range of 7" must be a linear space for the proof to work.

We define the centre (z,y) of any two points z and y of X as follows: let
Hy = {z : d(z,2) = d(z,y) = %d(az,y)} and, inductively, H, = {z € H,_1 :
d(z,w) < 30(Hy—1) Yw € H,,_1} where §(A) stands for the diameter of the set

A. We first prove that ﬂ H,, has at most one point. Note that H,, C H,_1
n=1

and 0(H,) < 56(H,—1) : if 21,20 € H,, then z5 € H, 1 and hence d(z1,22) <

1
2

%5(Hn_1) by definition of H,. It follows that ﬂ H,, has at most one point.

n=1
Now, v = % € H;. We claim that it belongs to each H,,. For this we verify
the following:

veH,=>z+y—ueH, (n=12,.)(1)

Indeed this result is trivial for n = 1 and we prove it by induction on n. Thus
vweEH,=>ueH, 1=>2+y—uvueEH, 1=dlzt+y—uz)=dla+y—zu) <
%6([—[”_1) for all z € H,,_; because u € H, and z +y — z € H,,_1 by induction
hypothesis. This proves (1). Now suppose v € H,_;. To show v € H, we
have to show d(v,w) < 30(H,—1) Vw € H,_1. But d(v,w) = ||Z —wl|| =
tlz+y—2w||=idw,z+y—w) < 36(H,_1) since x+y —w € H,_; by (1).

oo o0
We have proved that v € m H,, and hence that m H, = {%¥} Yo,y € X. [We
n=1 n=1
remark that this gives a definition of the centre or mid-point of z and y involving
only the metric; algebraic operations are not involved!] It now follows easily that

T(&Y) = w for all z,y € X. Since T'(0) = 0 we get T'(5) = T(;) and

hence T'(x +y) = T(x) + T(y). This and continuity of T" yield linearity.

Problem 175

Let (X, d) be a metric space, A C X and f: X — (0,00) a map such that
f(@)f(y) < d(z,y) whenever z € A and y € A°. Show that A and A are F,
sets, i.e. they are countable unions of closed sets. Coversely, if A and A¢ are F,
sets show that such a function f exists.

[ Remark: there is no function f: R — (0,00) such that f(z)f(y) < d(z,y)
whenever x € Q and y € Q° because Q° is not an F,].
Let A, ={a€ A: f(a) > L}. If a € A, then f(y) < nd(a,y) for y € A°.

If a € fIn N A€ then the same inequuality holds and when y = a we get the
contradiction that f(a) = 0. Thus A, C A. Tt follows that A = U A,. Thus,

n=1
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A is an F,. The hypothesis is symmetric in A and A€, so A€ is also an F.
Now assume that A and A¢ are F, sets. Let {C,} and {D,} be increasing
sequences of closed sets with limits A and A€ respectively. For z € A let
N(z) = min{n > 1:z € C,}. Let f(z) = min{d(z, Dn(y)),1}. Similarly for
y € Alet M(y) = min{n > 1:y € D,} and let f(y) = min{d(y, Car(y)), 1}
If N(z) > M(y) then y € Dy C Dn(a) 80 f(z) < d(z,Dy(y) < d(z,y)
and f(z)f(y) < f(z) < d(z,y). If N(z) < M(y) then f(z)f(y) < f(y) <
d(y, Crr(y)) < d(,y) because x € C(z) C Chyqy)-

Problem 176

If f:(0,00) — R is a measurable function such that f(x + y) lies between
f(z) and f(y) for all  and y show that f is a constant. Give an example of a
non-constant (non-measurable) function with this property.

If f is not a constant then we can find x1,x2 such that a; < as where
a1 = f(z1),a2 = f(z2). Let S1(y) ={z € (0,y) : f(z) < a1} and Sy(y) = {z €
(0,9) : f(z) > az}. If x € (0, 321)\S1(321) then f(z) > a; and f(z; —z) < ag;
for, otherwise, a; = f(z1) = f(x + (1 — z)) would be between f(x) and
f(z1 —z) and hence it would exceed a;, a contradiction. Thus z; —z € Sy (z1).
This shows that Sy (%) U [z1 — {(0, £21)\S1(321)}] C Si(z1). This implies that

m(Si(z1)) > % since S1(%) and 21 — {(0, 321)\S1(321)} are disjoint. [m is
the Lebesgue measure]. Now note that f(2z) lies between f(z) and f(x) so
f(2z) = f(z). By induction we get f(nx) = f(z) for all n > 1 and for all
z € (0,00). It follows that f(qx) = f(z) for all rational ¢ > 0 and for all
x € (0,00). If y > 0 then we can find a rational number g > 0 such gz; < y. It
follows that ¢S1(z1) C Si(y) and hence that m(S1(y)) > 43+. Letting ¢ — -
we get m(S1(y)) > 4. A similar argument shows that m(S2(y)) > §. Since
S1(y) and Sz(y) are disjoint subsets of (0,y) it follows that m(Si(y)) = %
and m(S2(y)) = 4. This holds for each y and hence m(Si(y) N 1) = # for
any interval I C (0,1). It follows that the same holds for any measurable set
I C (0,1). In particular m(S1(1)NS1(y)) = M which means m(51(1)) = 0.
Similarly m(S2(1)) = 0. But m(S1(1)) = 4 which is a contradiction.

Let g be an additive non-measurable function: R — R and f(z) = 9(@)

x

Then f(x +y) = %Z(y) = 715/ (@) + 5 f(y) which lies between f(x) and

f(y) but f is not a constant.
Problem 177

Let C be a closed convex set in a normed linear space such that for some
>0, |z|]| <149 implies z = ¢+ y with ¢ € C and |ly|| < 1. Show that the
interior of C' is non-empty.

We claim that ||z|| < § = z € C.If a,b € (0, 00) we have (a+b)C = aC+bC.
Writing B, for {z : [[z]| < 7} we have Biys C By + C. This gives B(i452 =
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(1+5)Bl+5 C (1+5)B1 +(1+5)C= Bl+5+(1—|—5)0 C By +C+(1+(5)C =
k—1
B1+(2+6)C. By induction we get By 5y C Bl—i—Z(l—i—(S)jC = BH—%C.
3=0
This gives Bs C Bs;; + (1 — 3)C where t = (14 6)*. [t depends on k]. Now
|z|| < & implies x = x, + yx with ||2x]| < 6/t and y, € (1 — 1)C. Note that
1

rp — 0 as k — oo. Also, (1 — ) — 1so ﬁyk is a sequence in C' converging
t

to z. Since C' is closed we see that x € C.
Problem 178

Let f : [0,00) — R be a C* function such that (—1)"f™ (z) > 0 for all
x € [0,00) and for all n > 0. Show that the function g defined by g(z) =
W(m > 0),¢(0) = —f’(0) has the same property.

We have xg™ () = —f)(z) — ng»=V(z) and g™ (0) = 71“‘"7':’7_:)1(0)' Hence

x

g V(z) = —x%/t”_lf(")(t)dt and the result follows.
0

Problem 179

A Lemma in Rudin’s real and Complex Analysis says that if ¢y, co,...,cN

are complex numbers then we can find S C {1,2,..., N} such that ch >
j€s
N
1 lej| . Prove that for any € > 0 we can find an example where ch <
Jj=1 Jjes

N
L+ el
j=1

Let Cj = eijﬂ/N71 < j < N. Then lim je;(e) = lim jes](\?) _

N—oo N—oo
E les |
=1

O0+m/2
lim =129 L — = / e'tdt = 1 where Sp = {j € {1,2,..,N}: -3 <

0—m/2
0 —arg(c;) < 5} (as in Rudin’s book).

Problem 180
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Let S be the collection of all NV x N matrices A such that a;; > 0, Z a;; =1

3

and Z a;j = 1 for all 4, j. [ Matrices of this type are called Doubly Stochastic].

J
Find all matrices in & that commute with all other matrices in .

Let A be such a matrix. Let m be a permutation of {1,2,...,N}. Let P =
((pij)) where p;; = 1 if j = w(i) and 0 otherwise. Then P € <& and hence
AP = PA. This gives ajz-1(j) = ar(;); Vi,j. In other words, a;; = ax(i=(5)
Vi, j, V. This means that all the diagonal elements of A are the same and all
the non-diagonal elements are the same. The converse is also true: if a; = a
and a;; = b for ¢ # j with a + (N — 1)b = 1 [so that A € Q] then AB = BA
VB e S.

Problem 181

Show that there is a continuous map f : R — R which is not 1-1 but 1-1 on
Q. Show that if f : R — R is a continuous map which is 1-1 on Q€ then it is 1-1
on R.

First part is easy: f(x) = (x—+/2)? will do. Let (if possible) f : R — R be a
continuous map which is 1-1 on Q¢ but not 1-1 on R. There exist real numbers
a and b with a < b and f(a) = f(b). Let A = {z € [a,D] : f(z) = f(a)}. If this
set is dense in [a, b] then f is a constant there which contradicts the hypothesis.
Hence there is an interval (a, 8) C [a, b] such that f(x) # f(a) Vx € (a, 5). We
may suppose that (a, () is the largest interval with this property so that either
f(a) = f(a) and f(B) = f(a). If f takes values greater than as well as less than
f(a) on (a, B) then it would take the value f(a), a contradiction. Hence either
f((e, B)) C (f(a),00) or f((a,B)) C (—o0, f(a)). These two cases are similar,
so we assume that f((«,8)) C (f(a),0). Now f([a, []) is a compact interval
containing f(a) and contained in [f(a), 00) so it is of the type [f(a), m] with m >
7(a). Also, m = f(y) for some y € [a, B]. Now f(lay]) = f([y B]) = [ (@), m].
[Indeed, f([a,y]) C f([er, B]) C [f(a),o0) and the supremum of f([e, f]), namely
m, belongs to f([e, y]) so this interval has to be [f(a),m]. Similarly f([y, 5]) =
[f(a),m]]. If z € [a,y] then f(z) € f([o,y]) = f([y, 5]) so there exists z € [y, ]
with f(z) = f(2). Not both of x and z can be irrational (unless x = y) and we
have a 1-1 map from the irrationals in [, y] into the rationals in [y, 5] which is
a contradiction.

Problem 182

Let f : R? — R? be continuous. Prove that there is a non-empty proper
closed C in R? such that f(C) C C.

The proof below shows that R? can be replaced by R? for any d > 1. Let
C, = {z, f(z), f(f(x)),...}. We prove that C, # R? for some z. This would
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complete the proof since f(C,) C C, and, by continuity, f(C,) C C,. Let
D ={z:|z|| <1} and D, = {z € D : ||fj(z)]| > 1 for 1 < j < n} where
fo=fof,fs = fofolf etc. We consider two cases: D,, = () for some n
and D, # 0 for all n. In the first case take any x € D and note that C, C

Ufj(D)' [ Let # € D and choose 1 < j; < m with ||f;,(z)]] < 1. Since
j=1

fj,(z) € D there exists 1 < jo < n such that ||f;,+;,(x)|| < 1. By induction we

get ji,72,... € {1,2,...,n} such that || f}j,+jo+. .4, ()] < 1 for all k. Now any

positive integer m > n lies between j; + jo + ... + jr and 71 + jo + ... + Jrt1
n

for some k and f,(z) = fm*(j1+j2+...+jk)(fjl+j2+~-+jk (z)) € U [ (D) because
j=1

m — (j1 + j2 + ... + jr) < jet1 < n]. Note that C, C U f;(D) because f;(D)
j=1

n

is compact and U f;(D) is a proper subset of R? because R? is not compact.
j=1

Now cosider the case when D,, # () for all n. Each D,, is compact and hence

o0
ﬂ D,, contains a point zg. In this case C; is disjoint from {x : ||z < HIQ—“H} if

n=1

zo # 0 and it is disjoint from {z : 1 < ||z[| < 1} if zp = 0. This proves that C,
is a proper subset of R2.

Problem 183

Let X and Y be random variables on a probability space such that X,Y, X +
Y and X —Y all have the same distribution. Can we conclude that the common
distribution is degenerate (at 0)? What if EX? < co? What if £ |X| < 0o?

If EX? < cothen E[(X+Y)?+(X-Y)?] = 2EX?+2EY?s02EX? = 4EX?
so X = 0as. If E|X| < oo then E|X| = E|XYX + 35X < B[22 +
E|XFY| = 3E|X|+ E|X| = E|X| so £4¥ = Z%5¥ for some non-negative
r.v. Z. This gives X = Z21Y and |X| > |Y| (note that this last inequality
holds even when Z = 1). But the hypothesis now implies that | X| = |Y| a.s.
which (in view of X = Z2Y and Z > 0) implies Z = 0 and hence ¥ =0
and so % = 0 a.s.! This finishes the case E'|X| < oo. In general, however, we
cannot conlcude that the distribution is degenerate. Let U,V be i.i.d. with
density m. Let X = Y3V YV = U5V Then X,Y, X +Y,X — Y all have
the charcteristic function e~I*l.

Problem 184

Let f : R — R be continuous. Prove or disprove that there exists a contin-
uous strictly increasing function g : R — R such that f o g is differentiable on
R.
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False. We prove that f is continuous and no-where differentiable thehn no
such g exists. In fact f o g cannot be differentiable on in any non-degenerate
interval in R. To see this assume thet f o g is differentiable on (a,b) with a <
b. Let J = g(I) where I = (a,b). Then g~ : J — [ is increasing, hence
differentiable a.e.. Let y be a point in .J at which g~ is diffrentiable. Then
f = fogog ! is differentiable at y because f o g is differntiable at g~!(y). This
is a contradiction.

Problem 185

Does there exist a dense set F in R? such that every point in E has both
coordinates rational but the distance between any two points of E is irrational?

Yes! Let {(zn,yn) : n = 1,2,..} be dense in R2. Choose odd positive
integers k,, m, such that |xn — ’2% < % and |yn — % < % [ The interval
(2", —1,2"z,+1] contains an odd integer ky]. Theset {(&2, Z=) :n =1,2,...}
is dense in R?. [ Let (z,y) € R? and § > 0. The open ball with center (z,y)
and radius §/2 contains infinitely many of the points (z,,y,) and hence we

can choose a point (z,,y,) in it with 5= < §/2v/2. In this case the distance

from (z,y) to (5=, %=) does not exceed 6/2 + /& + & = 0/2 + vz < d].

ony 9n on
We complete the proof by showing that the distance between any two of the

points (%, ) is irrational. Let 1 < j < n. Then 4”d2((%, 2, (%, Te)) =

(5 = 5P AN - B0 = IR 4 )+ KL+ — 2T gk,

2"~ m,m, = 2mod(4) and hence d((%,%)a(%7%)) is irrational since

244m — (/2 + 4m) /2" is irrational for any two positive integers n and m. [
Ifv2+4m = % with (p,q) = 1 then p is even and ¢ is odd. If p = 2p; we get

(2 +4m)q?® = 4p? so 2|(1 + 2m)q¢* which is absurd].

Problem 186

Does there exist a dense subset S of the unit circle S such that all points
in S have rational coordinates and the distance between any two points of .S is
rational?

2 22 1\2
Yes. One such set is {(4(1(211)12), u (tz(il)gl) )t e}

Problem 187

There is no function f : R — R such that f(f(z)) = 2% — 2 Vz € R.

Write f,, for the n — th iterate of f. Let A and B be the fixed points of
f2 and f4 respectively. Then A = {z : 22 —2 =z} = {-1,2} and B = {z :
rt—42?+2 =2} = {-1,2, *1%‘/5, %‘/g} [ To solve the fourth degree equation
use the fact that two of th roots are —1 and 2]. Claim: f is a bijection of B.
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For this first note that b € B = f(b) is also a fixed point of f4 so f(b) € B. If
bl,bg € B and f(bl) = f(bg) then f4(b1) = f4(b2) which yields b1 = by. This
proves the claim. Next we observe that f maps A into A into itself. Indeed
rE€A= folx)==x

= fo(f(z)) = f(fz2(x)) = f(z) so f(z) is also a fixed point of f. This
shows that f maps A into itself. [It is also clear that f(—1) # f(2) : otherwise
fa(=1) # f2(2) which says —1 = 2 a contradiction. Thus f is a bijection
of A]. It now follows that f(*lé”/g) = *Hg‘/g. We cannot have f(%‘/g) =
’1%‘/5 because ’1%\/5 would then be a fixed point of f;. We have proved that
F(EEB) = =105 and f(=15¥0) = =145 Thus fo(=14Y5) = =14v5 and

_1%‘/5 € A a contradiction.
Problem 188

Let pi1, pigy .-y ft,, be non-atomic probability measures on (2, F). Show that
there exist disjoint sets Ay, A, ..., A, in F such that p;(4;) =+ (1 <i<n).

n

[ See also Problem 295]
Suppose this holds for n non-atomic p.m.’s. Consider (n + 1) non-atomic
P-IL'S iy, [, ...y fy 1~ There exist disjoint sets By, Ba, ..., By, such that p;(B;) >

% (1 <i<n)and U B; = Q. For each i < n we can write B; as a disjoint
i=1

union of sets B;1,..., Bin+1 with p;(B; ;) = m, 1 <j <n+1. Arrange
the setsB; 1, ..., Bin41 in such a way that g, ((B;1) = max{u, (B;;) : 2 <
n+1 n
j < n+1}. Let 4, = U Bi; (1 <i¢<n)and Appq = UBM' Then
j=2 j=1
n+1 n+1
pi(As) = Z/%(Big) = Z ﬁ = n%rl for 1 <i < mn. Also, pi,,1(Any1) =
=2 =2

n n n

ZMn+1(Bi71) > Z %—HMH+1(BZ) = ﬁN’nJrl(U Bl) = n—];-l' This proves (by
i=1 i=1 i=1

induction) that for each n there exist disjoint sets Ay, As, ..., A, in F such that
pi(A;) > L (1 < i < n). Of course we can replace As by subsets so that
pi(Ai) =5 (1<i<n).

Problem 189

Let {X; : i € I} be a family of random variables with finite mean. Which of
the following condition imply which others?

a) {X; : ¢ € I'} is uniformly integrable

b) There is an integrable random variable Y such that | X;| <Y a.s. for all
1el

c) There is an integrable random variable Y such that P{|X;| > a} < P{Y >
a} for all ¢ € I, for all a € [0, 00).
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b) implies ¢) .Also ¢) implies a). [ In fact a simple Fubini argument shows

| X;|dP < / Y dP]. We give an example to show that a) does not

{IXi|>A} {y>a}
imply c). This also implies that a) does not imply b). Let I = (e,00) and X;

take values i and 0 with probabilities —+—, 1 — —1—. Then / | X;|dP =0

ilogi? ilogi”
{IX:|>A}
or %gi < 10§A according as ¢ < A or i > A. Thus a) holds. Suppose there is
an integrable random variable Y such that P{|X;| > a} < P{Y > a} for all
i €1, forall a €[0,00). Then P{Y >a} > P{|X;| >a} = - if0<a<iIn

ilogi
particular P{Y > i} > ﬁgi Vi € (e, 00). Hence /YdP = Z YdP >
F=0t<y <k1)
ZkP{k <Y<k+1}= ZP{Y >k} > Z “;gi = 00. It remains to see if
k=0 k=1 k=3

c) implies b). Let {¢,,} be i.i.d. N(0,1) and note that ¢) holds with ¥ = &;.
There is no random variable Z such that |¢;| < Z a.s. for all i. This is clear
from the fact that P{sup |¢;| < n} = 0 for each n so Z > n a.s. for each n!

Problem 190

Does there exist a compact set K in a normed linear space X such that
every point in X\ K has exactly two points in K closest to it?

NO! We prove that if there is a point y such that y has exactly two points
in K closest to it then there is a point that has a unique element in K that
is closes to it. Let y € X\K and choose x € K such that d(y, K) = ||z — y|| .

Let u = “t¥. Note that B(y, ||z —y[) N K = (. Now the ball B(x, @) =
B(u, || — ul|) is contained in B(y, ||z — y||) and hence it does not intersect K.
It follows that ||z — u| = d(u, K). Now suppose there is another element v €
K with ||v —u|| = d(u, K). Then |[v—y| < |lv—ul + ||y —ul| = d(u, K) +
ly —ul < llu—a|| + |y —uf = Lzs2l 4 lz—vl — 1z — g It follows that v is
the other point closest to y. Now ||u —v|| = d(u, K) < |lu —z| = HmQ;yH But

then |ly —v|| < [Jlu —y|| + [lu —v|| < Hz2;y“ + w = ||z — y|| . The fact that =
and v are both at the same distance (viz. d(y, K)) from y shows that equality
holds throughout and hence that (u—y) = a(u—v) with @ > 0. This gives a > 0
and v = %-tz+ %ty This and the fact that ||y — v|| = ||z — y|| show that o = §
and v = 2y — x. This contradicts ||v — u|| = d(u, K) since the right side does

not exceed ||u — || = @ where as the left side is |2y —z — u|| = 73“12—74”.

Problem 191
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If f:(0,1) x (0,1) — R is separately continuous and if f vanishes on a dense
subset then it is identically 0.

Suppose f(a,b) > 0 for some a and b € (0,1). There exists § > 0 such that
f(z,b) > Lf(a,b) for |x —a| < 6. Let J=[a—6,a+ 6 N(0,1). Let T}, = {z €

J: f(z,y) > Lf(a,b) whenever [y —b| < 1}. Then J = U T,, and each T}, is
n=1
closed. By Baire Category Theorem there is an integer m such that 7, has non-

empty interior. This implies that T, x (b— %, b+ %) has non-empty interior in
(0,1)x (0, 1). By hypotheis there is a point (s,t) in Ty, x (b— =, b+ -1 ) such that
f(s,t) = 0. By definition of T,,, we get f(s,t) > 1f(a,b) > 0 a contradiction.
Similarly, f(a,b) < 0 for some a and b € (0,1) leads to a contradiction.

Problem 192

Compute sup{inf{@/{l — f®)}dt - x > 0} : f:[0,00) — R is continu-
0

ous}. Find all continuous functions f such that the supremum is attained at

f.

and it is attained only at the function f(z) = L vV €

1 1
-2

The supremum is 3

[0,00). Proof: write o(f) for inf{@/{l — f(t)}dt : x > 0}. By MVT applied
xz T 0

fo /{1 — F(#)}dt we have %/{1 @)}t = 1 — f(g(x)) with 0 < g(z) < 2.
0 0

Since 142 [{1= (@)}t = f(){1 = Fg(@)} — FO{1 - FO)} < L as w0
0

The desired supremum is therefore < 1 and (1) = 1, so

1
we get o(f) < 7. 1 5 I
the exact value of the supremum is %. Suppose f is a continuous function on

[0,00) with o(f) = . We will show that f(z) = 3 Vo € [0,00). Let F(z) =

1

Ll f)at if
r/f( Jat >0 Note that o(f) = L implies £(0){1 — £(0)} = % which
0
% ifz=0
implies f(0) = 3. Thus F is continuous on [0, 00). Claim: f(z) > F(z) > 0 Vz
and F is non-decreasing on [0, 00). Once the claim is proved we can complete the

proof as follows: f(x)[1— F(z)] = f(x)%/[l — f(t)]dt > & (because o(f) = 1).
So f(xz) > 0and F(z) < 1.Let I = lim F(Zx)(e [0,1]). Note that if lim inf f (z) >

Tr—00 xr— 00

88



T A T A

I then F(z) = %/f(t)dt > %/f(t)dt+ %/f(t)dt > %/f(t)dt+ %/(l+§)dt

0 0 A 0 A
= %/f(t)dt—i— L1 +0)(z—A) > 11+ 6)(x — A) > I+ 6/2 with sufficiently

large A and 2 (and some § > 0) which is a contradiction. This proves that
liminf f(z) < I. However f(x) > F(z) — [ so liminff(x) = [. Hence there is a

r— 00

sequence x,, — oo such that f(z,) — [. But then ; = o(f) < liminf %L”)/{l—
f(t)}dt = 1(1 —1) < % and hence | = 1. But F(0) =
F(z) =1 forallz. So /f(t)dt = ¢ for all z > 0 which gives f(z) =
to prove the claim. Leot f>0o0n[0,c. (Such ac > 0 exists because f(0) = 1).
Since f(2)[1 — F(z)] > o(f) = 7 and f(2)[1 - f(2)] < 1 we get f(2)[f(z) —
F(z)] > 0so f(z) > F(z). [If f(z) =0 then o(f) <0, a Contradlctlon) Now

>
Fl(z) = {&) _ %/f(t)dt = % — LaF(z)] = w > 0 so F is non-
0

\_/

x

decreasing on [0, 00). Since F(0) = 1 it follows that F(z) > 0 for all z. The
claim is now proved.

Problem 193

Let P and @ be projections on a Hilbert space H. It is well known that P < @
in the sense < Pz,z ><< Qx,x > for all z € H if and only if P = PQ = QP.
Let PYQ be the glb of P and @, i.e. the largest projection R which is < P and
< Q. If P+ Q is invertible show that P¥Q = 2P(P + Q) !

Let R = 2P(P + Q) 'Q. Then R = 2P(P + Q)" (P +Q — P) = 2P —
2P(P + Q)~'P = 2P[I — (P + Q)!]P. This gives RP = PR = R. We also
have B = 2(P +Q — Q)(P + Q)~1Q = 2Q — 2Q(P + Q)~'Q = 2Q[[I — (P
Q)71Q and so RQ = QR = R. Thus 2R = (P + Q)R = R(P + Q). This
gives R?2 = 2RP(P 4+ Q)™'Q = PR(P + Q)(P + Q)"'Q = PRQ = R. The
formula R = 2P[I — (P + Q)™ ']P shows that R is self adjoint. Hence R is a
projection. Since RP = PR = R and RQ = QR = R we see that R < P
and R < Q. Suppose S is a projection such that S < P and § < Q. We
have to show that S < R. We have 25 = (P 4+ Q)S = S(P + Q) and RS =
2P(P+Q)7'QS = 2P(P+Q)~'S = P(P+Q) ' [(P+Q)S] = PS = S. Similarly
SR=2SP(P+Q)'Q=25(P+Q)"'Q=SP+Q)(P+Q)'Q=S5Q =5
This completes the proof.

Problem 194
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Let V and W be vector spaces and T,S : V — W be linear. Suppose for
each x € V there is a scalar ¢, such that Ta = ¢, Sz (x € V). Show that there
is a scalar ¢ such that T' = ¢S.

Let {Sz; : i € I} be a (Hamel) basis for the range of S. Then i;,i5 € I,i; #
iz = T(xi, + xi,) = T(xi,) + T(x;,) which gives eS(xi, + 24,) = cq, Stiy +
Cz,, 5%, for some c. The linear independence of Sz;, and Sw;, implies ¢;; =
= c. Thus, ¢, is indpenedent of ¢ € I. In other words T'z; = ASxz;,% €

Cay,
N

I. Now let x € V. Then Sz can be wriiten in the form ZajS:cij. Let y =
j=1

N N

T — Zajmi].. Then Sy = 0 which implies Ty = 0. Thus Tz = Zaijij =
j=1 j=1

N

Z)\aijij = ASz.

j=1
Problem 195

Let f: (a,b) — R satisfy the following conditions:
fis 1-1, limir_lkff(y) > f(z), limsupf(y) < f(z) for all z € (a,b) and
y—a

Yy—xT—

limsupf(y) = air;fd)f(x). Show that f is strictly decreasing and continuous.

y—b—
Give an example to show that the last condition cannot be dropped. The same
conlcusion holds if liminff(y) = sup f(z).

y—at a<z<b

1

The counter-example: a = 0,b = oo, f(z) = = for 0 < 2 < 3 and for

2<z <00, flz)=3—a fori<az<2
Now the proof: suppose, if possible there exist x1,z9 such that z7 < xo
and f(z1) < f(zg). Since f is 1-1 we may increase x; to ensure that we also
have f(z1) # inf<bf(a:). Let A = {z € (z2,b) : f(t) > f(x1) on (z2,x)}. Since
a<x
liminff(y) > f(z2) > f(z1) it follows that A # (. Suppose o = sup A < b.
Yy—T2

either f(a) < f(xz1) or f(a) > f(z1). In the first case limsupf(y) < f(a) <

Yy—o—
f(z1) so f(y) < f(xy) for all y € (o — &, ) for some 6 > 0; But then (o —
§,a) N A = () contradicting the the fact that o = sup A. In the second case
limir}rff(y) > f(a) > f(z1) so f(y) > f(z1) for all y € (o, a+n) for some n > 0.
y—a

There is a sequence {a,,} C A increasing to « and f(y) > f(x1) on (z2,a,) for
each n. So f(y) > f(z1) on (z2,@). We are assuming that f(a) > f(x1) and we
have proved that f(y) > f(x1) for all y € (o, « + n). Putting these together we
see that f(y) > f(x1) forall y € (2, a+n) contradicting the fact that v = sup A.
We have now proved that @ = b. By hypothesis limsupf(y) = limsupf(y) =

y—a— y—b—

inf@f(x). However, f(y) > f(z1) > inf<bf(:z:) on (z2,a). This contradiction
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shows that f is (strictly) decreasing. The hypothesis that lim i&f fly) = f(=),
y—w
limsupf(y) < f(z) for all © € (a,b) now shows that f is continuous. The

y—a—
last part is proved in a similar fashion by looking at B = {z : z < x; and
f(t) < f(ze) for z <t <z}

Problem 196

Compute max{min{|z; — z;| : 7 # j} : @ = (21,22, ..., x,) € R™, ||z| < 1}

The answer is /%. Let z; = a+bi,1 <i < n. Then ||z||* = Z(a+bi)2.
Maximize over a € R to see that |z|| < 1 if |b] = 1/%. This shows

12

CEEIE We now prove that it is at most

the desired maximum is at least

%. The maximum is attained at some vector (a1, as, ..., a,) and there is

a permutation 7 of {1,2,...,n} such that by < by < ... < by, where b; = a,(;),1 <

1 < n. For j > ¢ we have b]‘ —b; = (bi+1 — bl) + (b, — bifl) + ...+ (bj — bjfl) >
(j —9)min{b; —b; : j > i} = (j —9) min{|a; —a;| : j # i}

= (j — i) max{min{|z; — x| : ¢ # j} : z = (x1,22,...,zp) € R?,||z]| < 1}. Tt

—b

suffices to show that bjjl i< /=22 for some i and j with i < j. For this it

—1 n(n2—1)
suffices to show that Z(bj —b)? < n(nlle) (j —14)%. The exact value of the
i#£] (2]
right side of this inequality is 12y [2n UG — o (rEDN2] — 9y The

left side is Z(aj —a;)? = QnZa? - Z(Z aj)? < 2n.
i J

Problem 197

Let n € {2,3,4,5,6,7}. Does there exist an n— times continuously differen-
tiable function f : R — R such that f(z)f’(z)...f(™(z) < 0 for all x € R?.

The function f(z) = e~ satisfies the desired inequality for n = 2,5 and
6. The function f(z) = —e™* satisfies the desired inequality for n = 4. We
prove that the inequality cannot hold for all x when n = 3 or n = 7; in fact
the same is true when n = 3(mod4). As a first step we show that there is no
twice continuously differentiable function g : R — R such that g(z)g”(x) < 0
for all . Indeed, if such function exists then g and g” have no zeros and have
constant signs on R. Changing ¢g to —g¢ if necessary we may suppose g(x) < 0
for all z and ¢”(x) > 0 for all . g is then strictly convex. It is the upper
envelop of its tangent lines, i.e. it has the form g(z) = sup{a;z +b; : i € I}.
We have a;x + b; < 0 for all real  which implies a; = 0 for all 4. Thus g is a

constant and ¢’ = 0, a contradiction. Now suppose n = 3(mod4) and there
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exist an n— times continuously differentiable function f : R — R such that
f(@)f'(z)...f"(z) < 0 for all z € R. Then each of the functions f),0 < j <n
have constant signs on R. By what we just proved fU) and fU*2) have the
same sign for 0 < j < n — 2. Tt follows that f’(x)f® (z)...f“™+3)(2) and
(@) fP(x)...f4m+2)(z) (where n = 3 + 4m) are both > 0 provided f’ > 0.
Multiplying thes two we see that f(z)f’(z)...f™ (z) > 0. Note that the desired
inequality doesn’t change if we replace f by —f. So there is no loss of generality
in assuming that f’ > 0 and the proof is complete when n = 3(mod 4). What
n(n+1)

happens for other values of n? Note that if =5 is odd then f(z) = e~ serves

as an example. if 4|n then f(z) = —e™" serves as an example. n = 2(mod 4) or
n = 1(mod 4) = @ is odd.

Problem 198

If 21,02, .; Ty € R%2 21 + 29+ ... + 2, = 0,n > 2 and ||2;]| < 1 Vi show that
|lz; + 2] <1 for some i and j.

W.lo.g z; # 0 for all . By a rotation we may assume that x; is on the
positive x—axis. If each x; is on the r—axis then one of them, say x; must be
on the negative z—axis and ||z; + ;|| < 1. In the contrary case at least one
x; is on the (open) upper-half plane. [Otherwise Im[zq 4+ 22 + ... + 2,] < 0
which implies that all the vectors are on the x—axis]. Let x5 be the one in the
upper-half plane with maximum angle with the positive r—axis. If 85 > 2?” then
oz + 212 = a2+ la1 [P+2 llz1 | 2] cos(02—0) < [Joz*+ [z |2 = ]l

<z ||* < 1if ||za|| < ||lz1]| and a similar argument holds if [|z1]| < [z2]|.
Assume now that 69 < 2X.

3
There must be another x;, call it z3 such that 65 > 0> where 0; is the angle

made by x; with the positive x— axis. To see this note that Z |2 €% =02) =0
j=1
and 6; < 6, Vj would imply sin(d; — 02) = 0 and 6; — 05 € {0, 7, —7} for all j
forcing all the xg-s to be on the z—axis. Thus 0 = 0; < 0; < %’T and 05 < 6s.
But 65 is the largest of the angles 6; corresponding to the x;s in the upper-half
plane. it follows that #3 > 7. Now consider the cases 63 > %’T and 03 < %’r.
In the first case cos(f3 — #2) < —1 and in the second case cos(f3 — 61) < —1.
In these cases we get (respectively) |z2 + 3| < 1 and |lzs + 21| < 1. This

completes the proof.
Problem 199

Let 1, 79.73, 74 75, T be vectors in A = {z € R? : ||z|| < 1} whose sum is
0. Show there are three vectors among these whose sum belongs to A.

By previous problem the sum of two of these is in A. Let z1 + z2 € A.

Consider the 5 vectors z1 4+ 22, £3, £4,T5, T6. By previous problem again the sum
of two of these is in A. If the sum =1 +x2 +2;,3 < j < 6 we are done. Suppose
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two of x3,24 25,26 have a sum in A. Take these as 3 and z4. For simplicity
we write x;; for x; + ;. Thus x12 and x34 both belong to A. Once again we
apply previous problem to {12, %34, 5, Zs} and note that the only case where
a proof is required is when z56 € A. Among the vectors z12, T34, 56 there must
be two such that the angle between them does not exceed %’T [ This is true
for any three vectors!]. W.l.o.g assume that these are 12 and x34. Rotate the
vectors so that the positive x-axis is bisects the angle between these two and
rename them, if necessary so that z12 is in the lower half plane. Let 3;; be the
'signed’ angle between z;; and the positive z—axis with —7 < f3,; < m. Then
Biy = —B, B34 = B with 28 < 2T Note that 1 is in the fourth quadrant and
234 is in the first quadrant. At least one of x5, g must be in the left half plane
since the sum of all /s is 0. Assume that x5 is in the left half plane. If 25 is in the
upper half plane then the angle between 15 and x5 is the smaller of the numbers
a+ [ and 27 — a— 8 where « is the angle made by z5 with the positive z—axis.
This angle is at least 2?” provided § > 7/6. In this case ||z + 22 + 5] < 1.
Similarly, if x5 is in the lower half plane then |z3 + x4 + z5]| < 1 provided
B > m/6. To finish the proof we consider the case § < 7/6. Here < x19,234 >
> 0. We have [|z12 + as|” +||w34 + zs]|° +]|212 + z6l|” +]|w34 + 6l|” = 2[[|w5]|* +
lz6l|” + llzial” + llzsal® + < @5 + 6, T12 + T34 >]

= 2[|lzs||* + ||lzs]|”* — 2 < 212, 234 >] < 4 which implies that one of the four
terms is < 1.

Problem 200

Show that there is no expanding continuous map from R? to R2. [ f: R? —
R? is expanding if ||f(z) — f(v)|| > ||z — y]| for all z,y].

We prove that if (X,d) and (Y, p) are metric spaces and if there is an ex-
pand map from X to Y then the Huasdorff dimension of X does not exceed
the Hausdorf dimension of Y. This would show that there is no expanding map
from R™ to R™ if m > n because the Hausdorff dimension of R™ is n. [ Re-
call definition of Hausdorff dimension: let A C X and consider H(A,a) =

lir%inf{Z{(diam(Un)}“ A C UUn,Un is open in X,diam(U,) < € Vn}
where a > 0. Then inf{a > 0 : H(A,a) = 0} is the Hausdorf dimension of
A]. Since Hausdorff dimension of f(X) does not exceed that of ¥ we may as-
sume Y = f(X). Thus f is bijective. Let g = f~!. Then g is a contraction:
lg(z) — g()|| < ||z —y| for all z,y. It follows that H(g(E),a) < H(E,a) for

all @ > 0. Hence the dimension of g(F) does not exceed the dimension of E. In
particular the dimension of X does not exceed the dimension of Y.

Problem 201

1
Let f :]0,1] — [0, 1] be continuous with /f(m)dx = 0. Show that a®f(a) =
0
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a

/(w + 22) f(x)dz for some a € (0,1).

0

x

Let g(z) = 2% f(x) — /(y2 +y)f(y)dy. We have to show that this continuous

0
function vanishes somewhere in (0, 1).
We prove that there exist a,b € [0,1] such that g(a) < 0 and g(b) > 0.
x

This would finish the proof. Now, g(z) < 2%f(z) — m/(y2 +y)dy = 22 f(z) —

w
M

m(E +2) = 2?m —m(5 + %) < 0if f(z) =m = min{f(): 0 < ¢ < 1}.
1

[ We used the fact that m < 0 which follows from / f(z)dx = 0]. Similarly,

g(z) > 2 f(w M/y+ydy—x2M M/y+ydy—x2M M(%+%)>O
if f(z)=M = rilax{f( ):0<¢ <1} We have finished the proof. Note that
the hypothesis /f(x)dx = 0 can be replaced by the weaker hypothesis M > 0
and m < 0.

Problem 202

Let X be a normed linear space over R and T': X — X satisty T(z+T(y)) =
Tz +y for all z,y € X. Prove that if sup{||Tz| : ||z|]| = 1} < oo then T is a
continuous linear map with 72 = I.

We have T(T(0)) = T0 = T(—T0+T0) = T(—T0)+T0. Hence T(~T0) = 0.
If Ty = 0 then Tx = Tx+y so y = 0. Taking y = —7°0 we see that 70 = 0. Hence
T(0+Ty) = TO+y = y. In other words, T? = I. Now T'(z +y) = T'(z +T?y) =
Tx+Ty. Thus T is additive. Hence T'(ax +by) = oT'(z) +bT(y) if a,b € Q. Let
M = sup{||Tz| : ||x = 1||}. Let = # 0 and u be a vector linearly independent of

x. Consider Hx + THZiiT—ZZHH for (a,b) € R*\{(0,0}. Taking b = 0 and a = £1 we

see that Hac + rﬁ ’ = ||z|| £ r belong to the range of this continuous function
of (a,b). If 0 < r < ||z|]| and « is a rational number in (||z| — r, ||z| + r) then
there exists (a,b) € R?\{(0,0} such that Ha:—H“ e opbu ‘ a. [ This follows

[laz+bul|
from connectedness of R?\{(0,0}]. Note that ||v]| € Q = ||Tv| = ||| Trr ’ <
M ||v|| . Thus taking v = x + TH%I?ZH we get ‘T:c + rT(HZiIgZH)H < Ma. By

triangle inequality this yields ||Tz| < Ma+ |r|M < Ma + ||z| M < (||z|| +
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r)M + ||z|| M. Letting r — 0 through positive rationals we get | Tz| < 2M ||z]| .
The rest is obvious.

Problem 203

Let f : [0,1] — R be continuous and non-constant. Let m and M be the

1 1
minimum and maximum of f on [0, 1]. If /f(x)dz = 0 show that /xf(x)dx <
0 0
—mM
2(M—m) "

Let F(x) = mljg n + MI(ar,) where M —m = a. [ Note that m < 0 < M].
We may suppose (by multiplying f by a positive number and changing f to

1 1

—f if necessary) that &« = 1 and /xf(x)dx > 0. We have /xF(m)dm =
0 0

M 1

/xF(x)dx + /xF(m)dJc = mMTQ + M1*2M2 = =M — 2&\}[{]‘;{1). It suffices to

0 M

1 1 1 1
show that /xf(x)dac < /xF(x)dx Since /F = 0 we have 0 = M/(f(m) -
0 0 0

0
M

Fla))dz = M/(f(x) ~ F(2))de + M/(f(x) ~ F(2))da

0
M

> /I(f(fﬂ) — F(x))dx + /z(f(z) — F(z))dz = /x(f(x) — F(z))da.

0 0

Problem 204

Show that any function f : R — R is the composition of two Lebesgue
measurable functions.

Let h(z Loy = () 2y g() 2m) = f(z 5=). Make g linear in each of
the intervals removed in construction of Cantor’s ternery set.

Problem 205

Say that a function f : R — R is Cesaro continuous if c—lim a,, = a = c—lim
flan) = f(a). [c — lima, = a means “t%tedtn — g Find all Cesaro
continuous functions R — R.

B +yy _ f(@)+f W)
Considering sequences of the type {z,y, z,y, ...} we see that f(*5¥) = S22 18,

Also, {z : f(x) < a} is closed for each a. Thus, f is measurable and hence it
must be affine.
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Problem 206

Let f : R — R be continuous. if /fg” > 0 for every non-negative C?

function g with compact support show that f is convex.

Fix €, A and approximate f by a polynomial on [—-A; A] to within e. Use

integration by parts to conclude that [ p'”g > 0; conclude that p is convex.

Problem 207

Let p be a real measure on the Borel o—algebra of R such that p(I) = 0 for
every interval of length 1 or /2. Show that y is the zero measure.

w(I) is zero of T is an interval whose length is a positive integer or a positive
integral multiple of v/2. Hence it is zero if m(I) = n—m+v/2 or m(I) = mv2—n
where n and m are positive integers. But {n 4+ m+/2 : n,m integers} is dense.
Hence there are arbitarily small positive numbers § such that u(I) = 0 for
intervals of length 6. It follows that u{z} = 0 for all « and that p(I) = 0 for
any interval 1.

Problem 208

Say that functions f and g : R — R are similar if there is a function A : R —
R which is bijective and f = h=! o goh. Prove that sin and cos are not similar.
Find all numbers a, b such that z? is similar to 22 + az + b.

If 22 is similar to 22 + ax + b then there is a bijection h of R such that
h(z? + az + b) = [h(z)]*Vx. Let h(c) = 0. Then ¢ + ac + b = c since h
maps both these points to 0. Also 22 + ax + b = ¢ has at most one root
since h is 0 at these roots. This equation has c as a root becuase h is 0 at
bith sides of this equation. Hence the equation has equal roots. Therefore,
a? = 4(b — ¢). We get a® = —4(c? + ac) which means (a + 2¢)> = 0. Thus
a? = 4(b—c) = 4(b+a/2) = 4b+ 2a. Note that if this last condition holds then
a bijection h satisfying h(z? + ax + b) = [h(z)]?Vz exists: take h(z) = x + a/2.
Thus 2 is similar to 22 + ax + b if and only if a® = 4b 4+ 2a. What about sin 2
and cos z?

Problem 209

If f and g are continuous functions : R — R which are periodic with pe-
1

1 1
riod 1 show that /f(x)g(ny)dy — /f(x)dy/g(m)dy [This is called Fejer’s
0 0 0
Theorem).
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By a simple change of variable this can be converted to the case where the
period is 27 and the the range of integrals is from 0 to 2r. We can appriximate f
and g by trigonometric polynomilas (e.g. cesaro averages of their Fourier series)
so it is enough to consider the case when f(z) = ¢’** and g(z) = ¢"™*. In this
case direct evaluation gives the result.

Problem 210

1
/z" f(z)dz
0

Find lim =———— for continuous functions f and g on [0, 1] with g > 0 on

z"g(x)dx

S

[0, 1].

Make a change of variable. Ans.: %.

Problem 211

Suppose {f,} is a decreasing sequence of non-negative continuous functions
on [0, 1] such that whenever f is continuous and f,, > f > 0 we have f(x) = 0Vz.

1
Can we conclude that /fn (x)dz — 07
0

No! Let U be an open set containing every rational number, with measure
1/2. [Enough to construct and open set V' containing rationals with measure
not exceeding 1/2; we can take U to be V U (0,z) for a suitable z. For on
[0,1] we can take the union of sufficlently small intervals around rationals]. Let

1
fulz) = [1 = d(z,U°)]™. Then /fn(a:)dac > /1dm = 1/2Vn. However, if f
0 Ue
is as in the statement of the problem then f(z) = 0 whenever d(x,U¢) > 0
i.e. whenever x € U. In particular f = 0 on @ and continuity forces f to be
identically 0.

Problem 212

Prove that % — 1if ¢, # 0,a, + ¢, # 0Vn,—1 is not a limit point
of {22} and z—" — 1. Give an example to show that the condition that —1 is
not a limit point of {'Z—’;} cannot be dropped. [If a,, by, c, are all > 0 then the

b

condition can be dropped and the only hypothesis is o — 11]
For the counter-example take a, = 4 — 1,b, = % + L. ¢, = %

n n’
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Problem 213

If {a,} is a sequence in R\{0} show that there is a subsequence {a, } such
that {aanki“} converges to 0,1 or oo.
'llk

First choose a subsequence that converges to -oco or co or a finite limit (which
may be 0 or non-zero).

Problem 214 [See also Problem 86 above]

Let (X, d) be a metric space. Show that the following are equivalent:
a) Every continuous map f : X — R is uniformly continuous

b) The distance between any two disjoint closed in X is positive.

a) implies b): Suppose A and B are disjoint closed sets with d(A, B) = 0.
There is a continuous function f : X — [0, 1] such that f(A) = {0} and f(B) =
{1}. By a) f is uniformly continuous. By Problem 86 above d(f(A), f(B)) = 0.
This gives the contradiction |1 — 0| = 0.

b) implies a): Suppose f : X — R is continuous but not uniformly con-
tinuous. By Problem 86 there exists sets A and B such that d(A4, B) = 0 but

d(f(A), f(B)) > 0. We calim that the closed sets A and B are disjoint. If

© € AN B then there exist sequences {an}, {b,} contained in A and B respec-
tively both converging to x. Now |f(an) — f(bn)| > d(f(A), f(B)) > 0 for each

n which contradicts the fact that f(a,) and f(b,) both tend to f(x). Thus A
and B are disjoint. By b) d(;l, E) > 0. However d(;l,é) <d(A,B) =0.

Problem 215 [ See also Problem 86 and Problem 214]

Let (X, d) be a metric space which has at most finitely many isolated points.
If every continuous function f : X — R is uniformly continuous show that X is
compact.

Remark: the example X = N shows that the assumtion on isolated points
cannot be dropped]

Remark: if every real continuous function on a subset A of a metric space X

is uniformly continuous then the subset is necessarily closed: if z € ;1\A then

Yy — m is a continuous function on A which is not uniformly continuous. [ If

{zn} C A and z,, — x then d(z,, xm) — 0 but {m} is not Cauchy because
it is not bounded]

Suppose X has a sequence {z,} with no convergent subsequence. Choose
positive numbers d,,,n = 1,2, ... such that B(z,,d,) does not contain any z,,
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with m # n and §,, < % Vn. Since x, is not an isolated point for n suffi-
ciently large (say, for n > N) we can find distinct points z, m,,m = 1,2, ... in
B(xy, 6n)\{zn} converging to x,, as m — oo (forn = N, N+1,...). We may sup-
pose d(Tpn,m,Tn) < = V¥n,m. Let A = {z,, :n > N} and B ={z,:n> N}
Claim: A is closed. Suppose Tp;n, — ¥. Then d(y,z,;) < d(y,Tn,n;) +
d(Zn;n;, Tn;) < dY, Tn; 2m;) + 0n, — 0. Thus x,, — y. Since {x,} has no
convergent subsequence it follows that {n;} is eventually constant and hence
Yy = 1ijm Tp, n, belongs to A. Clearly B is also closed. Further, AN B = (). Let

f: X —[0,1] be a continuous function such that f(A4) = {0} and f(B) = {1}.
By hypothesis f is uniformly continuous. Note that d(A, B) < d(zp, Zn.n) < =
V¥n. Thus d(A, B) = 0 and, by problem 86, d(f(A), f(B)) = 0. This contradicts
the fact that f(A) = {0} and f(B) = {1}. This contradiction shows that X is
compact.

Problem 216
Let f be a fucntion from R to R. If the restriction of f to Q U {z} is
continuous for each irrational number x show that f is continuous.

Let x € R, e > 0 and consider g~ *[f(x) —¢, f(x) +¢€] where g is the restriction
of f to QU{x}. This set is open in QU{z} and it contains =. Hence there exists
0 > 0 such that if ¢ is any rational number in (z —d,2 4 ) then |f(q) — f(z)| <
€. Combined with the hypothesis this shows that y € (z — d,z + ¢) implies

|f(y) — f(z)| < e
Problem 217

Let A be a closed subset of a metric space (X,d) and f : A — [1,2] be a con-
tinuous function. Let F(z) = f(z) if v € A and F(z) = m inf{f(y)d(z,y) :
y € A} if © ¢ A. Show that F is a continuous extension of f to X.

Let {z,} — z. If x ¢ A then z, ¢ A for all n sufficiently large and
e (), y)  y € A} — g f{f(y)d(,y) : y € A} as n — oo.
Indeed, d(w, A) — d(z, 4) > 0 and f(gd(zn,y) < F)d(@5)+ F()d(@0,2) <
f(y)d(z,y)+2d(z,, z). Taking infimum over y € A and using a similar inequality
in the reverse direction we get F'(z,,) — F(z). Now let © € A. We may split {z,, }
into two parts, one contained in A and the other in A¢, and, using continuity of
f we mat reduce the proof to the case x,, ¢ A for any n. We have to show that

B, = m inf{f(y)d(zn,y) : vy € A} — f(x). We first prove that

limsupB, < f(z). We can find y, € A with d(z,, A)(1 + L) > d(zn,yn)

n

and 8, < gty f(Wn)d(@n,yn) < (14 3)f(yn). Also note that d(z,, A) —
d(xz,A) = 0 so y, — x. This gives limsupf,, < f(z). Now inf{f(y)d(zn,y) :

y €AY+ > f(yn)d(xy,yn) for some y, € A. Thus 3, > %. In par-

ticular 2 > f(x) > limsupg,, > lim sup% which implies that d(z,,y,) — 0
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and hence that y,, — x. Thus, if € > 0 is given then §5,, > fn)d@nyn) B, >

d(zn,A)
W > (f(z)—e¢) for n sufficiently large proving that limninfﬂn > f(z).

The proof is complete.

Remark: the range [1,2] can be replaced by any [a,b] with a < b. It can
also be replaced by any open interval or the whole line R. Here is a proof when
the range is (—1,1) : Let G be a continuous extension of f to X with values
in [-1,1]. Let C = G7'{—1,1}. Then A and C are disjoint closed sets and
hence there is a function ¢ : X — [0, 1] such that ¢(A4) = {0} and ¢(C) = {1}.
Let F = (1 — ¢)G. Then |F(x)| <1 for all  and equality can hold only when
|G(z)| =1 and ¢(x) = 0. But there is no z satisfying there properties and F' is
the desired extension.

Problem 218

Show that [0, 1] cannot be expressed as a countable union of (more than one)
non-degenerate closed intervals. Show that the same is true of (0,1).

[ Problem 229 below contains a stronger result. Obviously, ’countable ’ can
be dropped]

Suppose [0, 1] = U[an,bn] with ¢, < b, VYn and [an, by] N [an, by] = 0 for

n
n # m. Note that any collection of non-degenerate intervals is countable since
such intervals contain at least one rational number. Let U = U(an,bn) and

D = [0,1\U. Then D C {a, : n > 1} U {b, : n > 1}. Since any perfect set
in R is uncountable [Theorem 6.65 of Real and Abstract Analysis by Hewitt
and Stromberg] we can complete the proof by showing that the closed set D is
perfect. Suppose z is a isolated point of D. Suppose = = a; for some k. We can
choose § > 0 such that § < by —x and (z—0,2+0)ND = {x}. The point x —§/2
is in some [ay, by,]. If b, > x+J the we see that ©+ /2 € [ak, bg] N [an, b,] which
forces k and n to be equal. But = — §/2 < = = ay = a,, contradicting the fact
that  — §/2 is in some [ay, by]. Thus b, < x+ ¢ and b, € (x — 9§,z + ) [Indeed,
x—0<x—0/2<by,x+ 9. But then b, € (x — 3,z + )N D = {z}. Thus
x = ar, = by,. If n = k this contradicts the fac that [a, b;] is non-degenerate
and if n # m this contradicts the fact that [ak, bk] N [an, b,] = 0. This finishes
the proof when z is a left end point of one the intervals [a,,, b,],n = 1,2, ... and
a similar argument holds when it is a right end point.

Now suppose an open interval (a,b) is a disjoint union of non-degenerate
closed intervals. Then, using the fact that [a—1,b+1] = [a—1, a]U(a, b)U[b, b+1]
we can express [a — 1,0+ 1] in a similar way which is a contradiction.

Problem 219

If every real continuous function on a topological space is bounded then
every real continuous function on it attains its supremum (and infimum).

If M =sup{f(z):x € X} then is continuous but not bounded.

1
M—f
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Problem 220
Show that X = [0, 1] with the product topology is separable.

Let k € N and Ji, Jo, ..., Ji be k disjoint closed intervals with rational end
points contained in [0,1]. Let 71,72,....,7; € Q. Define z € X by z(t) = r;
for all t € J;,1 < j < k and z(t) = 0 if ¢t does not belong to any J;. This
defines a countable collection of points in X. Consider a basic open set V =
{z: x(t1) € Ur,z(t2) € Ua, ..., z(t) € Uy} in X where k is a positive integer, t}s
are distinct points of [0, 1] and Us are open sets in R. There exist disjoint closed
intervals with rational end points containing t1, o, ..., tx. Pick rational numbers
71,72, ..., T in U1, Us, ..., Ug. Define x € X by x(t) =r; forallt € J;,1 <j <k
and z(t) = 0 if ¢ does not belong to any J;. Then z belongs to the countable
collection we just defined. Also this point lies in the basic open set V. This
completes the proof.

Second proof: we prove that polynomials with rational coefficients are dense
in X. Any basic open set {z : z(t1) € U1, z(t2) € Us,...,xz(tx) € Ux} contains
polynomial with rational coefficients: there is a continuous function in this set
and this function can be approximated uniformly on [0, 1], hence on {¢1, ta, ..., tx }
by a polynomial with rational coefficients.

Problem 221

Show that X = [0,1]/ with the product topology is not separable if the
cardinality of I exceed the cardinality of power set of N.

Let D be a dense subset of X. With each i € I associate the subset D N
p;1(0,1) of D where p; : X — [0,1] is the projection map p;(z) = 2;. We claim
that this map is one-to-one. If i1 # iy then the dense set D must intersect
the non-empty open set pi_ll(O7 1) ﬂp;(l,Q). If v e pi_ll((), 1) ﬂp;(l,Q) NnD
then x € p;ll(O, N D\p;(o, 1) N D and hence p;ll((), 1)ND# p;;(O, 1)nD.
This proves our claim and shows that the cardinality of I does not exceed the
cardinality of the power set of D.

Problem 222

Prove or disprove: if X is a compact metric space and X = U U; where
icl
each U; has non-empty interior then X is covered by a finite number of U/s.

False: let X = [0,1]. Let U,, = [n_lH, 11 n =23,... and Uy = [%,1] U {0}
then
UpuUU; UUs U ... UUp does not contain ﬁ

Problem 223

The one point compactification X of N is metrizable. Find a metric explicitly.
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d(n,m) = {% —

L1 d(n,00) = 1.
Problem 224
Find the cardinality of the Stone-Cech compactification of N.

By definition of 8(N) the cardinality of 3(N) does not exceed that of [0, 1011
which is 2¢. Let D be a countable dense subset of [0, 1], [ See problem 220
above]. Let f : N — D be a bijection. Since f is continuous and [0, 1] is
a compact Hausdorff space there is a continuous function F' : S(N) — [0, 1][0’1]
which extends f. Since N is dense in S(N) and the range of F is compact it
follows that F' is onto. Hence the cardinality of S(N) is at least equal to that of
[0, 1]1%1 which is 2¢. Hence the cardinality of 3(N) is exactly 2¢.

Problem 225

Let (X, d) be a metric space and A be a subset of X such that AN K is open
in K for every compact set K. Show that A is open in X.

If = belongs to the closure of A€ then there is a sequence {z,} in A€ converg-
ing to z. Let K = {z,21,x9,...}. Then K is compact and {z,} is a sequence in
the closed set A°N K converging to . Hence x € A°N K. In particular x € A°.
Thus A€ is closed.

[ X can be any first countable Hausdorff space for this proof to be valid. A
simpler argument shows that X can also be a locally compact Hausdorf space].

Problem 226

Let A be a Gy in R. Show that there is a continuous function f : R — R
such that f is continuous at all points of A and discontinuous at all points of
A€,

See Problem 260 below for another construction.

[ Such a function can exists only if A is a Gy].

Proof: let A be a Gs in R. Let B = A°. Write B as a disjoint union of sets
Ey, Es, ... such that F1 U FEy U ..U E, is a closed set C), for each n. [ Let B =
C1UCLU... with each C), closed and let Ey = C1, E,, = C,\{C1UC2U...UC), 1}

Oifxe A
1 0
for n > 2]. Let f(z) = :{fﬁ i f@éﬁ"é .
%ﬁ if z € E9\Q

Note that if x ¢ A then # € E, for a unique n and = € E,\(EY) or
r € ESNQor x € EO\Q. Thus, f is a well defined function from R to R. If
z € Aand z; — x then f(z) = 0 and f(z;) < % if v; € B, (or z; € A).
To show that f is continuous at x we only have to show that n; — oco. If this
is false then there is an integer k and a subsequence {j;} of {1,2,...} such that
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xj € By C By UEyU ..U E} for each [. But the union is here is closed and
hence z € F1UFE>U...UFE, C B which is a contradiction. Thus, f is continuous
at each point of A.

Now let x € B. Then x € E,, for some n. To prove that f is not continuous
at x we prove that if V' is any neighbourhood of x which intersects F,, then f
is not a constant on V. [ If f is continuous at z then for any € > 0 there is a
neighbourhood V' of x such that |f(z) — f(y)| < € for all y € V. We choose ¢
as follows: f(x) (which belongs to {%, n%rl, %H}) has positive distance ¢ from
{% : % # f(x)}. Let 0 <e<d. Ify e Vand f(y) # f(x) then f(y) is % for
some % # f(z) and so € < |f(z) — f(y)|, a contradiction. Thus f is constant

on V]. Now, if VN E? # 0 then VNE?NQ # () and V N E2\Q # 0. Thus
there is points y1,y2 of V such that f(y;) = n%_l and f(y2) = 1#2 Thus f
is not a constant on V. Now let VN EY = (). Let y € VN E, C 9E,. Then
VN(E1UEU...UE,_1)°#0. [Infact,y € VN(E,UFEyU...UE,_1)]. Thus
VN(E1UEyU...UE,_1)¢ is a neighbourhood of y. Since y € OF,, it follows that
VN (El UFEyU... UEn_l)cﬁEfl 7é 0. Let z€e VN (El UFEyU... UEn_l)cﬁETCl.
Then f(z) = 0 or f(z) = % with j > n + 1. In particular, f(z) < n_lH. But
f(y) = L and hence f(y) # f(z) completing the proof.

Remark: the result holds in any topological space which contains a set D
such that D and D¢ are both dense: we can replace Q by D in above proof. No
space with an isolated point can have such a set and it is known that any first
countable space without isolated points and any locally compact Hausdorf space
without isolated points contains such a set. Ref: Sets of Points of Discontinuity
by Richard Bolstein, Proceedings of AMS, Vol.38,No.1, 1973.

Problem 227

Show that there is a metric D on R such that |z,, — 2| — 0 implies D(z,, z) —
0 ( equivalently every open set for D is open for the usual metric) and (R, D)
is compact.

Consider the one-point compactification X = (R\{0}) U {oo} of R\{0}. [
Neighbourhoods of 0o are complements of compact subsets of R\{0}]. The map
f : R — X which is identity on R\{0} and maps 0 to co is a continuous bijection.
[Indeed, if x,, — 0 in R and U is a neighbourhood of oo then U® is a compact
subset of R\{0} and hence z,, ¢ U® for n sufficiently large]. Define D(z,y) =
d(f(z), f(y)) where d is a metric for X. X is metrizable because R\ {0} is second
countable and there is a countable local base at 0o : {[-N, N|\(—+, %) : N =
1,2,...} is a countable base at co. Thus X is a second countable compact
Hausdorf space and hence a compact metric space.

[ The argument can be modified to prove a general result: any locally com-
pact separable metric space has a smaller metrizable topology which makes it
compact (cf. page 188, Exercise 113, of Wilansky). Also, if X is locally com-
pact and Hausdorff then there exists a smaller topology on X which makes it a
compact Hausdorff space: let z € X and Y = (X\{z}) U {oc} be the one-point
compactification of X\{z}. Let f: X — Y be defined by f(y) = yify € X\{z}
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and f(z) = oo. If V is an open set containing co then V¢ is a compact subset of
X\{z}. We claim that this set is contained in the interior of another compact
subset H of X\{x}. This is an easy consequence of the fact that X is a locally
compact Hausdorff space. Now X\ H is a neighbourhood of x and f(X\H) C V.
Thus f is continuous. The weakest topology on X which makes f continuous is
the required topology.]

Problem 228
Let f : C — C be a continuous map such that @ — 1 as z — oo. Show
that f must vanish somewhere.

Let A be such that ‘@ - 1‘ < 1for |z| > A. Let N be a positive integer

such that N > A and N > sup{|f(z) — 2| : |z] < A}. If |z] < N then either
|z| < Aor A< |z| <N. In the first case |f(z) — z| < N and in the second case
|f(z) —z| < |2| < N. Thus |z| < N implies |f(z) — 2| < N. By Brower’s Fixed
Point Theorem the function z — f(z) must have a fixed point.

Problem 229

Show that [0,1] cannot be written as a countable disjoint union of two or
more non-empty closed sets.
Conclude that a countable T} space contains no non-constant path.

The second part follows immediately from the first: if v is a non-constant
path then inverse images of singletons sets in the range of + shows that [0, 1]
can be written as a countable disjoint union of two or more non-empty closed
sets.

(oo}
Now suppose [0,1] = U C,, where each C), is closed and non-empty and
n=1
CnNCp, =0 for n # m. [ Note that [0,1] cannot be written as a finite disjoint
union of two or more non-empty closed sets. This is clear since these closed
would also be open congtradicting connectedness of [0, 1]]. By BCT at least one

C)p, has non-empty interior. Let A = [0, 1]\ U CY. Clearly A is closed and

n=1

oo
A= U 0C,,. We claim that its interior is empty: if [a,b] C A with a < b then,
n=1
by BCT again, there is an open interval I C [a,b] and an integer k such that I C
0C%. But C} is closed and hence 0C) has empty interior. This proves our claim.
o0

Now A = U 0C,, and another application of BCT shows that there is an open

interval (o, §) such that (a, )N A is non-empty and contained in OC; for some j.
To complete the proof we show that there is at least one point in («, 8)N(A\IC;).
Note that (, 3)NC¥ is open and non-empty. [ Let z € (o, 8)NA. Then z € 9C;
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and (a,3) is a neighbourhood of = so this neighbourhood must intersect Cf].
If (o, B) N C5 is contained in A then A would have interior points contradicting
the claim above. Thus (a,3) N Cf intersects A°. Let y € (a, ) N Cf N A°.

Note that y € [0,1] = U C, and y € A°. By definition of A we see that
n=1

y € CO for some m. Observe that (o, 8) N A N OC,, = O since IC,,, C A. We
are trying to prove that (o, 8) N (A\OC};) is non-empty. If this set is empty
then (o, 5) N A C 9C; C C; which implies that (a,3) N ANIC, = 0. |
Note that y € C§ N Cp, and hence m # j]. Now (a,3) N A°NAC,, = 0 and
(o, )N ANIC,, = 0 together yield (o, 3) NOC,, = B and so (a, 3) is the union
of its intersection with C2, and C¢, ( the exterior of Cy,). By connectedness of
this interval and the fact that y € (a, 8)NCY, we conclude that (o, 3)NCE, = 0.
But this means (a, 3) C C,,. This implies that (o, 3) C CY, and hence («, 3)
has no intersection with A. But « € (a, ) N A and this finishes the proof.

We give another proof of the first part. This proof does not use BCT. suppose
[0,1] = U C,, where each C,, is closed and non-empty and C,, N C,,, = @ for

n=1

n#m. If Uy = {z: dz,Cy) < %d(Cl,Cg) then Us is open, Cy C U and

UsNCq = 0. Pick a point in Cy and consider the component of that point in Us.

Thus A, intersects Cy but does not intersect C7. A, is a closed interval. We

claim that it contains at least one boundary point of Us. Otherwise, As C Us

and since Ay is a compact interval it cannot be maximal: there is a larger

open interval between A, and Us. If = is a point of As which is in U, then

z ¢ Cy (because Cy is contained in the open set Us). Thus, A3\Cs # (. Also
oo

A\Cy = | (A2 N Co)because A, N Cy € U N Cy = 0. Now Ay N C,y # 0
n=3
for at least one n > 2. We repeat the above argument for the interval A;. By

induction we get a sequence of compact intervals Ay, Ag, ... such that 4,11 C A,
and A, NC,,_1 = 0. There must be a point in the intersection of these intervals
and that point cannot belong to any C),. This contradiction completes the proof.

Problem 230

Let f: (X,d) — (Y, p) be a continuous and closed map. If y € Y show that
df~Hy} is compact.

Let {z;} be a sequence in df *{y}. For each positive integer n the set
B(zy, L) N f71(B(y, 1)) is an open set containing x,, ( because df '{y} C
f~Yy}) and since z,, € df ~{y} there must be a point z, in this open set which
does not belong to f~'{y}). Thus z, € f~*(B(y, 2)\{y}) and d(z,,2,) < L.
Let A = {2, 29,...}. Note that f(z,) — y and hence y belongs to the closure of
f(A). However y ¢ f(A). Since f is continuous and closed the closure of f(A) is

same as f(;l) Thus A is not closed. | Because y belongs to the closure of f(A)
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andy ¢ f(A)]. Let z,, — u with u ¢ A. Then z,,, — u (because d(zy, z,) < 1)
and hence the given sequence {z,} has a convergent subsequence. [ Note that

u = lim ,,, necessarily belongs to df~'{y} because this set is closed].
Problem 231

Show that a metric space is compact if and only if it is complete under any
equivalent metric.

If X is a compact metric space then it is so under any equivalent metric,
so it is complete under any equivalent metric. Suppose now that X is a metric
space which is complete under any equivalent metric.

Suppose X is not compact. Without loss of generality assume that the
original metric d on X is such that d(z,y) < 1 for all z,y € X. There ex-
ists a decreasing sequence of non-empty closed sets {C,,} whose intersection is

empty. Let p(z,y) Z = ) where d,(z,y) = |d(z,C,) — d(y,Cpn)| +

min{d(z, Cy), d(y, )}d( y). We claim that p is a metric on X which is
equivalent to d and that (X p) is not complete. Note that d,(z,y) < 2 for
all z,y € X. If z and y € C}, then z and y € (), for 1 < n < k and hence
plx,y) < Z % = 3r. Thus, the diameter of C in (X, p) does not exceed
n=k+1

2%. Once we prove that p is a metric equivalent to d it follows that p is not
complete because {C),} is a decreasing sequence of non-empty closed sets whose
intersection is empty.

Assuming (for the time being) that d,, satisfies triagle inequlaity it follows
easily that p is a metric: if p(z,y) = 0 then d(z,C,) = d(y,C,) for each n
and min{d(z, Cy,),d(y, Cy)}d(x,y) = 0 for each n. If d(z,y) # 0 it follows that
d(z,Cy) = d(y, C,) = 0 for each n which implies that z and y belong to each C),
contradicting the hypothesis. Thus p is a metric. Also p(z;,) — 0 as j — oo
implies |d(z;, Cy) — d(z,Cy)| — 0 and min{d(z;,Cy),d(z,Cy)}d(z;,z) — 0 as
j — oo for each n. There is at least one integer k such that ¢ Cj and we
conlude that d(z;,z) — 0. Conversely, suppose d(z;,z) — 0. Then d,,(z;,x) —
0 for each n and the series defining p is uniformly convergent, so p(z;,z) — 0.
It remains only to show that d,, satisfies triangle inequality for each n . We
have to show that |d(z, C),) — d(y, Cy,)| + min{d(z, C,), d(y, Cy) }d(x,y)

< |d(z,Cp) — d(z,Cp)|+min{d(z, Cy,),d(z, Cp) Yd(z, 2)+|d(z, Cy,) — d(y, Cpn) |+
min{d(z, Cy),d(y, Cy)}d(z,y) for all z, y, z. Let r1 = d(z,Cy,),r2 = d(y,Cy), 13 =
d(z,C}). We consider six cases depending on the way the numbers 71, 79,73 are
ordered. It turns out that the proof is easy when r; or ro is the smalles of the
three. We give the proof for the case r3 < 71 < 7. (The case r3 < ry <7y is
similar). We have to show that

ro — 11 +rid(x,y) < r1 —rg + r3d(z,z) + r2 — r5 + r3d(z,y) which says
rid(z,y) < 2ry — 2r3 + rad(x, 2) + r3d(z,y). Since d satisfies trangle inequality
it suffices to show that rid(x, z) + r1d(z,y) < 2ry — 2r3 + r3d(z, 2) + r3d(z, y).
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But this last inequality is equivalent to (r; — r3)[d(z, 2) + d(z,y)] < 2r; — 2r3.
This is true because d(z,z) + d(z,y) <1+ 1= 2.

Problem 232
Any two countable dense subsets of R are homeomorphic.

The relative topology of a dense subset of R is same as the order topology.
We prove that if A ={aq,as,...} is a countable subset of R such that A has no
largest or smallest element and between any two elements of A there is another
element then there is an order isomorphism from A onto T' = {% 1 j,n € Z}.
This would prove that A and Q are both homeomorphic to 7" and hence A is
homeomorphic to Q. Define f : A — T as follows: (assume that a/ s are distinct)
let f(a1) =0, f(an,) = 1 where n; is the least integer such that a,, > a1. Let
f(an,) = 2 where ny is the least integer such that a,, > a,,, and so on. Let

f(am,) = —1 where m; is the least integer such that a,,, < a1, f(am,) = —1
where mg is the least integer such that a,,, < am,, and so on. Let f(ak,) = %
3

where ks is the least integer such that a; < Uy, < any s flag,) = 5 where ky
is the least integer such that a,, < ar, < an,, and so on. We get a strictly
increasing function from a subset of A to T. Note that if a,, is in the domain of
this function so is a,4+1 (why?). Thus, the domain is all of T'.

Problem 233

Prove or disprove the following:

if (X, 7) is a topological space, A is a subspace of X and U,V are disjoint
open sets in A then there are disjoint open sets Uy, V7 in X such that U = U;NA
and V =V; N A. What happens if X is assumed to be metrizable?

Let A = {0,1} considered as a subspace of R with the co-finite topology.
Then {0} and {1} are disjoint open sets which are intersections with A of disjoint
open sets in R ( since there are no disjoint non-empty open sets in R!). The
result is true if metrizability is added to the hypothesis. We prove a slighly
more general result: if {U;};¢cs is a collection of open sets in A then there exists
a collection {V;} of open sets in X (indexed by I) such that whenever J is

a finite subset of I and ﬂ U; = 0 we also have ﬂ V; = 0. We define V/s
jed jeJ

explicitly as follows: V; = {z € X : d(z,U;) < d(z, A\U;)}. Tt is clear that V;
is open and its intersection with A is U;. Suppose J is a finite subset of I and
m U; = 0. Suppose y € n Vj. Then d(y, U;) < d(y, A\U;) for each j € J. For
j€J =

each j there exists u; € U; such that d(y,u;) < d(y, A\U;). Pick j such that
d(y,u;) = min{d(y,w;) : | € J}. For some | # j we have u; € A\U; and hence
d(y,w) < d(y, A\U;) < d(y,u;). This contradicts the choice of j.
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[ Any countable metric space withous isolated points is homeomorphic to
Q: Sierpinski, Fund. Math., 1920,11-16. Thus QN [0, 1] is homeomorphic to Q.
Direct proof?]

Problem 234 [ See also Problem 121 above]

Let (X, d) be a compact metric space and f : X — P(X)\{0} be a map such
that d(a,b) < d(z,y) whenever x € f(a) and y € f(b). [ P(X) is the power set
of X]. Show that f(x) is a singleton set for each = and that f is an isometry
from X onto itself [if we write f(x) for the element of the singleton set f(x)].

Let a,b € X and define {a,}, {b,} to be any two sequences in X such that
an, € f(an—1) and b, € f(b,—1) for each n with ag = a,by = b. By compactness
of X there exists n; 1 oo such that d(an;,a,,) and d(an,,an,) — 0 as j,k —
00. Let € > 0 and choose m such that d(an;,an,) < € and d(an,,a,,) < €
for j,k > m. It follows by hypothesis that d(an;—n,,,a0) < d(an;,an,) <
¢ and (similarly) d(bp,—n,,,bo) < € for j > m. Now d(a,b) < d(a1,b) <

- < d(an;—np by —n,,) < d(n;—n,,,a0) + d(ao, bo) + d(bn, —n,, bo) < 2€+
d(a,b). Since € is arbitrary it follows that d(a,b) = d(aq,b1). This equality
holds whenever a,b € X and a; € f(a),b; € f(b). Taking a = bwe get a; = by
whenever ay,b; € f(a). Thus f is single valued and d(a,b) = d(f(a), f(b)) for
all a,b € X. This implies that the range of f is closed. It is also dense: if
x € X then {z, f(z), f(f(z)),...} has a convergent subsequence and hence this
subsequence is Cauchy. It follows from the fact that f is an isometry that x can
be approximated aribtrarily closely by points in the range of f. Thus the range
is both closed and dense. It follows that f is an isometry of X onto itself.

Problem 235

Let X be a Hausdorff space K be a compact subset and U,V be open sets
such that K C UUYV. Show that there exist compact sets K; and K5 such that
K, C U,KQ CcVand K =K; U K,.

Let A = K\V,B = K\U. Since A and B are compact and disjoint there
exist open sets S and T such that A C S'and B C T'. Replacing .S and T by their
intersections with U and V respectively we may suppose S C U and T' C V. Let
Ky = K\S and K; = K\T. Note that K\S C K\A C V. Similarly, K\T C U.
Also K =K, U K5 because S and T are disjoint.

Problem 236

There exists a compact metric space X and a homeomorphism f: X — X
(onto) such that f is not an isometry under any equivalent metric.
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Let X = {z € C: |z| = 1} and f(e) = /™) for 0 < t < 2. Then

the n — th iterate f,, of f is given by f,(t) = ¢ TT@ T . Thus fu(t) — 1 as
n — oo for each ¢t. If f is an isometry for some metric d compatible with the
usual topology of X then 0 = d(1,1) = limd(f,(t), fn(s)) = d(f(¢), f(s)) for
any pair (t,s) which leads to the contradiction that f is a constant.

Problem 237
Let Q@ = N, F = power set of N and P{n} = 54 forn = 2,3,..., P{1} =

onT
[e’s}

1-— Z % Show that there are no non-constant independent random variables

n=2
on this probability space.

Let X and Y be independent random variables on (€2, F, P) and suppose
they are both non-constant. Let E be a non-empty Borel set in R which does
not contain X (1) and F' be a non-empty Borel set which
does not contain Y (1). We prove that P{X 1 (E)NY "Y(F)} # P{XY(E)} P{Y1(F)}.

We have P{IX"H(E)} = Y & Py '(F)}= > & and P{X"Y(E)N

X(n)eE Y (n)eF
Y-YF)} = > . Let A= {n: X(n) € E} and B = {n :

X(n)eE,Y(n)eF
Y(n) € F}. If P{IX~Y(E)NY~Y(F)} = P{X~(E)}P{Y~!(F)} then we have

E 2}“ E 2}13 = E 2}1! . This gives E W = E % We look

neA neB nceANB ncAmeB ke ANB

at the two sides as expansions to base 2 of some number in (0,1). We note that
n! 4+ m! = k! + j! implies (n,m) = (k,j) or (n,m) = (j,k). To see this suppose
n is the least of the integers n, m, k, j and divide both sides by (n 4 1)!. We get

%ﬂ € 7Z, a contradiction unless j or k equals n. If k = n then we get m! = j!

so m = j. Thus in the sum Z ﬁ each term is repeated at most twice.
ncA,meB

If k € AN B we must have % = W or % = ﬁ Hence n! +m! = k!

or n! +m! —1 = (k!). We note that n! + m! can never be a factorial, nor can

n!+m!—1 be a factorial since —1 is not divisible by 2! Thus AN B is empty. This

contradicts the equation Z W = Z % and the proof is complete.

ncAmeB ke ANB

Problem 238

Let (X,d) be a metric space without isolated points. If every continuous
function from X into R is uniformly continuous prove that X is compact.

Suppose X is not compact. Let {z,} be a sequence with no convergent
subsequence. There exists a sequence {y,} such that 0 < d(z,,y,) < % The
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set {z, :n > 1} U{y, : n > 1} has no limit points. Define f(z,) = n, f(y,) =
2n,n =1,2,.... Extend f to a continuous function on X. The extended function
is obviuosly not uniformly continuous.

Problem 239 [ Probabilistic construction of a strictly increasing continuous
singular function]

Let {X,,} be i.i.d. random variables with P{X,, =0} =p=1—- P{X, =1}
where 0 <p < 1,p# 1. Let X = Z 22 and F(z) = P{X < z}. We claim that

n=1
F' is continuous and strictly increasing on [0, 1] with F’ = 0 a.e. If a,, € {0,1}
for each n then P{X,, = a,Vn} = 0. Thus P{X =z} = 0 for each . [Indeed,

X=x= Z 4u forces {X,} to take at most two values in {0, 1}"). Thus F is
n=1
continuous. Now P{z < X < Lt} = P{X}, = a;,1 < k < n} where a)s are
n

determined by 7 = E 5&. Hence, F' is strictly increasing. Since monotonic

k=1
functions are differentiable a.e. it suffices to show that if 0 < z < 1 and F
is differentiable at x then F’(z) = 0. For each n there exists j, such that

i j i P{Xel, Pt ) —F(4%
I <p < It et I, = (&, d#l]. Then ZLXEM) — PR FGR) | pr(y),

If F'(x) # 0 this gives % — 1. It is easy to see that P{X € I,} is of

the type pa, Pas---Pa, Where p1 = p and pg = 1 —p. Thus P;f;igg}l} € {0,1} for

each n and hence it cannot converge to %
Problem 240

Give a proof of DCT (Dominated Convergence Theorem) without using
Monotone Convergence Theorem or Fatou’s Lemma.

Let (2, F,u) be a measure space, {f,} a sequence of meaurable functions
converging a.e. to a measurable function f such that |f,| < g a.e. and let
g be integrable. Let A, = {z : |fx(z) — f(x)| > dg(x) for some k& > n}
where 6 > 0. Then A, N {z : g(z) > 0} | A where A has measure 0.
Now [Ifs=fldu= [ 15 =fldu+ [ g~ flawand [ 15— fldn <

n A%

(5/ng. Also / |frn — fldp < / 2gdp. It reamins only to show that

n

Apn{z:g(z)>0}

/gdu — 01if B, | B and p(B) = 0. This is obviously true for a simple in-

B,
tegrable function g and the general case follows from the fact that there is an

integrable simple function h with / lg — h|du as small as we need.
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Problem 241

Let {a,} C R* |la,|| — oo and inf{||a, — an| : n # m} > 0. Show that

Ha”

oo
Zl hk+5 < oo for every > 0 but Z Wmay be oco.
n=

n=1

Let Ky = {x € R : |2;| < N for each i}. Claim: if A C Kx\Ky11 and

|la —b]| > r for any two distinct points of A then the cardinality of A does not
2@NEr) 1k _ o 2(2N=2-r))
T T

exceed ¢[ * where 1 is the Lebesgue measure of the ball
with center 0 and radius 1. For this let z(),2® .. 2™ ¢ A and note that
B(zW,%),1 < j < m are disjoint and they are all contained in {z : |2;| < N+
for each i and |z;| > N — 1 — § for some ¢}. Taking Lebesgue measure we see

o0 o0
(2N+r)F—(2N—2—1)F 1 _ 1
that m < ¢ B . Now Z T F7e = Z Z a7 <

n=1 N=la,e KN\KnNn+1

> c<2N+’“>ki<)2,fV*2*’“>k s < 00 because (2N +1)F — (2N — 2 — )% < (2r +
N=1

2)kth=1 < (27 + 2)k(2N + r)*~! for some t between 2N — 2 — 7 and 2N + r.
We now give an eaxmple to show that we cannot take § = 0. Let Sy be the
set formed by the points (—N + rj1,—N + 7ja, ..., —N + rj) where jls are
positive integers not eaxceeding % The cardinality of Sy\Sny=1 is at least
2N

[N

)F — (22=2)k Arranging U(SN\SNzl) in a sequence {a,} we see
N

(o) (o]
that Z W > Z ﬁ{(g)k — (F=2)ky > QZ% for some positive
n=1 N=1

constant a.

equal to (

Problem 242

Let A be a connected subspace of a connected space X. If C' is a connected
component of A¢ show that C¢ is connected.

We first show that if S is a clopen subset of A° then A U S is connected.
Suppose AUS = U UV with U and V open disjoint and non-empty in AU S.
Then A C U or A C V. Suppose, for definiteness, A C V. Then U is a clopen
subset of S. [U C AUS and U C V° C A°]. Hence it is a clopen subset
of A°. U is also a clopen subset of A U S and hence it is a clopen subset of
A°U(AUS) =X. [Indeed V C AU S and V¢ C A°]. But X is connected
and we have arrived at a contradiction. This proves that A U S is connected.
Now suppose C°¢ = E'U F where E and F' are non-empty disjoint open sets in
C¢. Since C C A€ we have A C C°. Thus A is a connected subset of £ U F.
It follows that A C E or A C F. For definiteness, let A C E. Now C' U F is
connected by the result just proved ( with C in place of A and F in place of S).
This connected set is contained in A¢ ( because F' C E° C A°) and it contains
C strictly, contradicting the fact that C' is a component of A€.
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Problem 243

Consider the set A = {Z apx™ Z lan| < oo} as a subset of C[0,1]. Is

n=0 n=0

this set of first category?

o0

Define T : l; — C[0,1] by T{an} = Z anz™. T is a continuous linear map
with a dense range by Weierstrass Apprgxi(;nation Theorem. Also, T is injective
(by basic facts on power series). If the range of T is of second category then the
proof of open mapping theorem shows that it is an open map. This would imply
that the range is complete, hence closed. But then T" would be surjective but
not every continuous real function on [0, 1] has a power series expansion. In fact
v/ is not differentiable and hence it does not have a power series expansion.

Problem 244

Does there exist a function f : R — R such that lim |f(y)| = oo for every
y—a

rational number x?

No! Since R = U {z : |f(z)| < n} there exists N and a < b such that
n=1

(a,b) is contained in the closure of {z : |f(x)| < N}. If y € (a,b) then there
exists a sequence {y;} converging to y such that |f(y,;)| < N for each j. [If
no such sequence exists then there exists § > 0 such that |f(z)] > N for all
z € (y—0,y+9)\{y}. But then no point of (y — J,y + d)\{y} can belong to in
the closure of {z : |f(z)| < N} which is a contradiction]. But if we take y to be
a rational number in (a,b) we get a contradiction to the hypothesis.

Remarks: the result holds with R replaced by a complete metric space and

Q replaced by a dense subset. In particular there is no function f : R — R such

that lim |f(y)| = oo for every irrational number x. We can also prove this by
y—w

considering ‘f(\/ﬁx)‘ + |%| I\ {0y
Problem 245

Let M be a closed linear space contained in C|[0,1]NC’[0,1] ( where C'[0, 1]
is the set of all continuously differentiable real functions on [0, 1]). Show that
M if finite dimensional.

Define T': M — C10,1] b\y T'(f) = f’. T is well defined and linear. We now
show that T has closed graph: let f, — f and f; — ¢ in C[0,1]. Then f is
¢

differentiable and f’ = g as seen from the relation f,(t) = f,(0) + /f;(s)ds
0
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By Closed Graph Theorem T is continuous. Hence |f'(z)| < ||T||||f|| for all
f € M. By Arzela Ascoli Theorem it follows that the closed unit ball of M is
compact. Hence M is finite dimensional.

Problem 246

Let x,, — x weakly in a Hilbert space H. What can we say about lim inf ||z,, — z||
and limsup ||z, — z|| other then the fact that lim inf < lim sup?

Nothing! We prove that given 0 < a < b < oo we can find an example where

lim inf ||2,, — || = @ and limsup ||z, — z|| = b. Let x,, = ane, in H = [?> where
{an} is a bounded sequence. Then z, — 0 weakly. Also liminf |z, —0| =
liminf a,, and limsup ||z,, — 0|| = limsup a,,.

Problem 247

Let {C,} be a decreasing sequence of closed convex non-empty bounded sets

o0
in a Hilbert space H. show that ﬂ A, is non-empty.

n=1

Proof: there exists z,, € C,, such that |z,| = inf{||z|| : z € C,}. Note
that inf{||z| : € C,,} < inf{||z| : © € Cpx1}. Hence {||z,||} is an increasing
sequence of real numbers.. It is also bounded because z,, € C,, C C;. Now
|Zntm — xn”Q =2 HanrmHQ +2 ”xn”Z = |t + xn||2and W € Cy, so
|Zntm + Tull > 2|20l So |Tptm — anQ <2 ||xn+m||2 +2 ”xn”2 —4 H93n||2 =
2(|Zngmll® = |zall?) — 0. Let 2, — . Since {@y, Tpi1, ...} is contained in C,,
it follows that = € C,, for each n.

Problem 248
If P and @ are projections on a Hilbert space show that ||P — Q| < 1 and
IP+Q|l>1if PQ=QP and P # Q.

Second part is trivial since ||[P — Q|| = ||P? — Q*|| < [P - Q| [P+ Q]| To
prove that first part let R=1— P and S =1 — Q. Then P = PQ + PS and
Q=PQ+RQso P—Q={PQ+ PS}—{PQ+ RQ} = PS — RQ. Since the
ranges of P and R are orthogonal we get |[Pz — Qz|* = |[PSz|” + ||[RQz|* <

2 2 2
15| + [|Qz|” = ll=|I".

Problem 249 | Non-metrizability of pointwise convergence topology]

Let p be the metric on X = C]0,1] defined by p(f,g9) = /% and

7 be the topology on X with {f : |f(z;) — fo(z:)] < €,1 < i < n} where
n € N,e;s > 0 and z}s € [0,1] as basic neighbourhoods of fy for each fy € X.
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Consider the identity map I from (X,7) to (X,p). Show that this map is
sequentially continuous but not continuous and that 7 is not metrizable.

Since pointwise convergence of a sequence of continuous functions implies
convergence in measure it follows that [ is sequentially continuous. If it is
continuous then there exist n € N,els > 0 and s € [0,1] such that {f :
|f(zi) — folzy)| <€, 1 <i<n}cC{f: /1-‘Ff\lf| < In particular/lef“Jc‘ <1
whenever f is of the type c¢(z — z1)(x — x2)...(x — x,,). We get a contradiction
by letting ¢ — oo.

Problem 250

Show that a homeomorphism from Q onto itself need not be monotonic and
its inverse need not be continuous.

i < >
Let a,be@cwitha<b,a+b€(@andf(:c):{ aillgi;;grfx_jb .

We may take a = v/2,b =1 —al.
Problem 251

Give an example of a strong metric (other than the discrete metric), i.e. a
metric d on a set X such that d(x,y) < max{d(z, z),d(z,y)} for all z,y, z. Show
that for any strong metric open balls are closed and, given any two open balls
either one is contained in the other or the two balls are disjoint.

Let p be a fixed prime. For any positive integer n let ¢(n) be the largest
positive integer k such that p* divides n. Clearly, ¢(nm) = ¢(n) + ¢(m). Let
d(£2) = ¢(n) — ¢(m). It is trivial to check that this is well defined on the set
of all non-zero rational numbers and that ¢(zy) = ¢(z) + ¢(y) for z,y € Q\{0}.
Define d(z,y) = p~®*% if x and y are distinct rational numbers and 0 if
x =y € Q. Claim: d is a strong metric. For this we have to show that
o(x —y) > min{g(xz — 2), ¢(z — y)}. Equivalently we have to show ¢(z —y) >
min{¢(z), p(y)} if z,y € Q\{0} and = # y. W.lo.g. let ¢(z) > ¢(y). In this
case we have to show ¢(x — y) > ¢(y) which is equivalent to qﬁ(% -1 >0.
Here z = £ is in Q\{0, 1} and ¢(2) > 0. Write z as ;- (n,m € N,n # m) .Since
p?(™) divides both n and m (because ¢(m) < ¢(n)) we see that p?(™) divides
n — m too and so ¢(n —m) > ¢(m) as required. Thus d is a string metric.

Now let d be strong metric on a set X. We claim that d(x,y) # d(y, z) =
d(z,z) = max{d(z,y),d(y,2)}. Suppose first that d(z,y) < d(y,z). We have
to show that d(z,z) > d(y,z). [ The reverse inequality follows from triangle
inequality]. But d(y,z) < max{d(y,x),d(x,z)} = d(z,z) [because if this last
maximum is d(y, z) then we would have d(y, z) < max{d(y,z),d(z,2)} = d(z,y)
a contradiction]. Now consider the case d(y, z) < d(z,y). To show d(z,z) >
max{d(z,y),d(y,2)} = d(z,y). But d(z,y) < max{d(y,z),d(z,2)} = d(z,z)
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[because if the maximum here is d(y, z) then we would have d(z,y) < d(y, 2), a
contradiction]. This proves the claim in all cases.

Let U = B(x,r). If y € U® and d(z,y) < r we claim that z € U° ( proving
that U€ is open and hence U is closed). If z € U then d(z,z) < r. Now d(y,z) <
max{d(y, z),d(x, z)} < r, a contradictionsince y € U¢. Thus, every open ball in
X is closed. Suppose now that z € B(z,r) N B(y, s). Since z € B(z,r) we have
B(z,r) C B(z,r) : d(u,2) < r = d(u,z) < max{d(u, z),d(z,2)} < r. We can
interchange = and z to conclude that B(z,r) C B(z,r). Thus, B(z,r) = B(z,r)
Similarly we get B(z,s) = B(y,s). Thus B(x,r) C B(y,s) or B(y,s) C B(z,r)
according as r < sor s <r.

Problem 252

Prove or disprove the following:
N

for any subsequence {n;} of {1,2,...} the sequence {+; Z ei®} converges
j=1
to 0 a.e. w.r.t Lebesgue measure on R.

N e 2m 0o
True. Let fy(z L Ze”h Then 72/ Z%
j=1 =1y j=1

0 Z | fj2 (a:)|2 < oo a.e. (on [0,27] hence on R). In particular f;z — 0

k
a.e.. Now, for N2 < k < (N + 1) we have fi(z) — fn2(x) = %Zei".ﬂc _
j=1
N? N? k
NLZ Zelnjx)(%*ﬁ)Jr% Z eini® SlnceZ%—Ni <
Jj=1 Jj=1 J:N2+1
Z(# - (N_;,l_l)z) < 00 and kfk{\ﬂ < (N+§\),27N2 — 0 we are done.

Problem 253

Let f € L'([a,b]). Show that f is Riemann integrable in the following
modified sense:

given € > 0 there is a function 4 : [a,b] — (0, 00) such that for any partition
{z;} of [a,b] and any choice if points &; in [z;_1,x;] satisfying the condition

N
z; — xi—1 < §(&;) we have Zf(gi)[xi—asi_l] —/fdm < €. [m denotes
=1

Lebesgue measure].
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There exists > 0 such that m(4) < n = / |fldm < e/3. Let r = g25—.

A
Let E; = f~1((j — 1)r, jr]) for each j € Z. Choose open sets U; such that E; C
U; and m(U;\E;) < m Any point z in [a, b] belongs to E; for a unique
j and we define U, = U;. We define 6(z) as d(z,US). Consider any partition
{z;} of [a,b] and any choice if points &, in [z;—1, ;] satisfying the condition
zi—xi_1 < 0(;). Note that [x;_1,x;] C Ue, = Uy, where j; is such that &, € Ej,.
[y € [wi—1,2;] then |y —&;| < z; —xi-1 < 6(5) = d(;,Us) which implies

N
y € Uj]. Now > f(&)[wi — 2] /fdm <Z / (z)| dx <
j=1

171 1 7w1

N
S1 + S5 + S3 where S; = Z / |f (&) — f(z)] dx,

jzl[zi,l,xi]ﬁE]‘i
N N

Sy = Z / |f(&;)|de and S3 = Z / |f(z)] dx. Since
jzl[%—lv%‘i]\E;‘i jzl[l‘i—hxz‘]\En
|f(&) — f(z)| < rforall x € [z;_1,2;] N Ej, (because z and &; both belong to

. Next we note that |Sa| = Z Z

m=—o00 {iiji:m}[zi—l’mi]\E’"
. oo

< (ml+Dr Y mUn\Ew) < (Iml+ 15 Y smmmtmy ( since
m=—0o0 m=—0o0
the sets [x;—1,x;]\Fm as i varies over all indices with j; = m are disjoint and

they are all contained in Uy, \Ey,) so |Sa| < rn < §. [ we have used the el-

ementary fact that (j — 1)r < ¢t < jr implies [t| < (1 4 |j])r]. Finally we
N N

E;,) we get |S1| < rb—a] <

wlm

look at Ss5. Let A = U([axl_l,mt]\El) Then m(A) < Zm([xi_l,xi]\E'i) =

=1
[e%S)

Z Z ([Tiz1, z:)\Ej,) = Z m(Um\En,) (since the sets [x;—1, ;]\ Em

m=—o0 {7 jz—m} m=—o0
as ¢ varies over all indices with j; = m are disjoint and they are all contained in

Un\Ey,) and so m(A) < n. It follows from the definition of n that / |f| < €/3.

N
It follows that |S3| < €/3 and hence that Zf(gl)[% — X1 — /fdm <e.
j=1

Remark: if § is a constant function then f is Riemann integrable (and hence
continuous a.e.).

Problem 254
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Is (R%,]|||,) isometrically isomorphic to (R?,||||..)?

Yes. The map (z,y) — (%52, 2 A 5%) is an isometric isomorphism of (R?, || )
1l < [+ 5] and 552 4

onto (R, ||||;) because |z| < ‘
‘%’ € {$7 —Z,Y, _y}

Problem 255

Let f : [a,b] — R be continuous. Prove that there is a function g : [0,b —
a] — R such that g is continuous, monotonically increasing, g(0) = 0 and

[f(x) = f(y)| < g(lz —y]) for all 2,y € [a,b].

Let g(t) = sup{|f(x) — F&)| &,y € [a,8] and |z — ] < 1} for 0 < ¢ <
b—a and g(0) = 0. It is trivial to see that |f(x) — f(y)| < g(|z —y|) for all
x,y € [a,b] and that ¢ is monotonically increasing and continous at 0. Now
let 0 <t < b—a. Suppose {t,} | t. Let ¢ > 0 and choose § > 0 such
that |f(x) — f(y)] < € whenever |z —y| < §. Let |z — y| < t,. We can find
z such that [z —z| < tand |z —y| < t, —t. [z =2+ ; (yfx) will do].
Hence |£(x) — f(&)| < 1(z) — F()| + |£() — F)] < g(t) L € if  is so large
that t,, —t < §. Taking supremum over all pairs (z,y) such that |z —y| < ¢,

we get g(t) < g(tn) < g(t) + € if n is sufficiently large. This proves that g
is right continuous. Now let ¢, T t. Let |a: — | < t. We can find z such
that [z — 2| < ¢, and |z —y| < t —t,. [ 2 = @+ 2(y — x) will do] Hence
@) — F@)| < 1) — FG)] + 1) — F@)] < g(t) + e it n is so large that
t —t, < 6. Taking supremum over all pairs (x,y) such that |z —y| < t we
get g(tn) < g(t) < g(t,) + € if n is sufficiently large. This proves that g is left
continuous.

Problem 256

Let A be a subset of a metric space X and f : A — R be continuous. Show
that there exists a G set B and a continuous function F : B — R such that
A C B and F(z) = f(z) for all z € A.

Let B = m U {z e A |f(y) = f(2)| < ¢ whenever y,z € A, d(z,y) < L
k=1m=1

and d(z,z) < -}, Suppose |f(y) — f(z)| < ; whenever y,z € A, d(z,y) < =

and d(z.2) < L. Tf d(z,u) < 2L then, for g,z € A with d(u,) < b and

d(u, )Sim haved( ,y) < L and d(z,z) < L and hence |f(y) — f(z)| < £.

This proves that U {z € A: |f(y) = f(2)| < + whenever y,2 € A,d(z,y) < L

m=1

and d(z,z) < L} is open in A for each k. Hence B is a G set. By continuity of
f on A it follows that A C B. If € B and {z,} is a sequence in A converging
to x the sequence {f(x,)} is Cauchy in R. Let F'(z) be the limit of this sequence.
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It is clear that this number does not depend on the particular sequence {z,}
and that F' is a continuous extension of f.

Problem 257

Any union of non-degenerate intervals is a countable union of intervals, hence
a Borel set.

Let F = U I, where {I,}aca is a collection of intervals of positive length.

a€cA
If x € E let J, be the union of all the intervals I, which contain z. Then J,

is convex, hence an interval. [ Consider ty + (1 —¢)z where 0 <t < 1,y € I,,
and z € Is. I, UI,, is connected because z € I, NI,,. Hence I,, UI,, is an
interval and so it contains ty + (1 — ¢)z]. It is clear that J,, and J,, are either
equal or disjoint for any two points z1,z2 in E. Pick a rational from each of
these intervals to get an injective map from {J, : x € E} into Q. It follows that
E = U J is a countable union on intervals.

relE

Problem 258
Find all compact subgroups of S! (under multiplication).

Let G be a compact subgroup of S'. Let H = {z € R: ¢"* € G}. Then H
is a subgroup of (R, +). Hence it is either dense or discrete. If it is dense then
G = S' : for any real number x there is a sequence {z,,} in H converging to
and e = lime*» € @ since G is closed. In the remaining case there exists a
positive number a such that H = {na : n € Z}. We consider two cases: ;- € Q

and 5= € Q° In the first case let 5= = % where p and ¢ are positive integers

with no common factors. We have G = {e??™P/4 : n € Z} = {e??™P/4 : p ¢
{0,1,...,g — 1}. Thus, G is the group of ¢ — th roots of unity in this case. If
2 € Q° we claim that G = S' : the set {n + mzX : n,m € Z} is dense in

R. Given z € R let n; + m;~ — Z. Then '™ = e2™nitiam; _, oix gapd
J J 21 27

e'®mi ¢ @ for each j proving that the closed set G is also dense in S*.
Problem 259

Using Uniform Boundedness Principle show that there exists a continuous
periodic function whose Fourier series at 0 does not converge.

[ 0 can be replaced by any other point. We prove below the existence of a
continuous periodic function whose the partial sums of whose Fourier series at
0 form an unbounded sequence].

Let X denote the Banach space of all continuous complex functions f on

[—7, 7] satisfying f(—)— f(7) with the supremum norm and let Sy (f, x) denote
the IV — th partial sum of the Fourier series of f at x. Define Ty : X — C by
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Tnf = Sn(f,0). If the Fourier series of every f € X at 0 converges then, by
Uniform Boundedness Principle, sup ||Tn|| < oo. We show that this is false.
N

Let € > 0, N € N and dn be a positive number such that /|DN(36)\ de < eif
B

m(E) < dn. The function Dy (z) = %
2

on [—m,7]. Let U be the union of small intervals around these points so that

(the intervals are disjoint and) m(U) < dn. Let f be a real valued continuous
[Dn ()]
D (2)
intervals that make up U. By the standard expression for Sy(f,0) in terms

has only a finite number of zeros

on U¢ and linear in each of the

function on [—m, 7] which is equal to

of Dy we have Ty f = %/fDN. Hence, T f = %/|DN| + %/fDN =
-7 Ue U

§/|DN|—i/|DN|+%/fDN. Noting that %/fDN < i/\DM <e
-7 U U U U

Thus Ty f > i/ |Dn| — 2e. Tt is well known that {%/ |Dn|} is unbounded;

—T —T
in fact i/ |Dn| — 2 log N is bounded. Hence the proof is complete. [ See p.
—T

154 of Fourier Series by Edwards for an explicit construction].

Problem 260

Let A be a G subset of R. Give a simple construction of a fucntion f : R — R
which is continuous precisely at points of A.

See ProblengO 226 above for another construction.

Let A = ﬂ G, with G, open and G,41 C G, for all n. Let f, =

n=1
(o]
Ic,\g, where C, = G5 and E, = QN CY. Let f = Y Hf,. We claim

n=1
that f has the desired properties. First let x € A. Then f,(x) = 0 for all
n. In fact, for each n, f, vanishes in a neighbourhood of z. Hence each f,
is continuous at x. By uniform convergence of the series defining f we see
that f is also continuous at z. Now let © € A°. Let k be the least positive
integer such that * € Cy. If x € C} then, in sufficiently small neighbour-
hoods of x, fr take both the values 0 and 1 and so its oscillation at z is 1.
We claim that the oscillation of f; at = is 0 for each j < k : since = ¢ C;
it follows that points close to x are all in €5 and hence f; vanishes at those
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oo

points. Now w(f,z) > &w(fr, z) — Z % since w(f;j,.) < 1 everywhere. Thus

j=k+1
1 1 1 1 1 1 _
wfim) 24— X Fzall= Y wmwm ) > Hl- X w7l =0
j=k+1 j=kt1 j=k+1

Problem 261
If fe€ LY(R) and 2f(t) = 3f(3t) + 3f(3t — 1) a.e. show that f =0 a.e.

Probability theory makes this quite simple. Let {X,} be iid. random
variable taking values 0 and 2 each with probability%and X = Z % Then

n=1

X takes values in the cantor set. Let p be a probability measure induced by X.
Then p(C) =1 and hence u L m where m is the Lebesgue measure. Note that

oo oo
. . Xy i2t/3"™ .
/e’t‘”du(cc) = EetX = H Ee'tst = H 1te—— From this we conclude that
n=1 n=1
o0
. 1 . . . 1+€i2t/3n
there is no L' function whose Fourier transform is H ~t¢5——. However, the

n=1

given equation yields 2}’(15) = f(t/3) + e“/3}’(t/3) where f(t) = /e”zf(:z:)dx.

Thus £(£) = £(t/3)(252%). Tteration gives £(t) = f(t/3%)(1Egt) (1)

2

Letting k — oo we get f(t) = {H ﬂ}f@) This would lead to the con-
n=1

i2t /3™

oo
tradiction that H e 77

5 is the Fourier transform of an L' function unless

n=1

£(0) which implies f(t) = 0 for all ¢ and hence f =0 a.e.
Problem 262

Let f: (0,1) — (0,00) be any function with lirgl+f(m) = 0o0. Show that
there is a non-negative convex function g on (0, 1) such that Hlir(r)1+g(x) = oo and

g(z) < f(zx) for all z € (0,1).

Choose a sequence of positive numbers {c, } such that a,, 11 < %, inf{f(z) :
apt1 <z < a,}>nanda, — 0. Let a, = —[a%—i—a%—i—...—i—i],n =1,2,.... Let
g(x) = apz—+n for any1 <z < a,. Wehave g(z) > apan+nior ani <o < ay,
and anan—i—n:n—an[a%—&—a%—&—...—i—a%] >n—[l+4 3+ ...+ 5] which
is positive for n > 1 and — oo as n — 00 so rli%l+g($) = oo and g is positive
on (0,t) where ¢ = ag and g(z) < n < inf{f(z) : apt1 <z < ap} < f(x) for
ant1 < ¢ < a, proving that ¢ < f. On the open interval (a1, ;) we have
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g'(x) = a,. Since {a,} is decreasing we can conclude that g is convex if we can
show that g is continuous at the points a,,n = 1,2,.... The right hand limit
of g at «y, is ap—1a, +n — 1 and the left hand limit is a,a, + n. However
Ay +1n = aylay — an_1]+apnap_1+n=-14+apa,_1+n=ap_10, +n—1.
We have proved that there exists a positive convex function g on (0, ¢) such that
acli%l_s_g(m) = o0 and g(z) < f(z) for all z € (0,t). It is clear from this proof

that if f is bounded below by a positive constant ¢ then (by applying above

argument to 2 f) we can construct a positive convex function g on (0,1) which

is bounded above by f such that lir51+g(x) = 00. For the general case let g, be
xr—

a positive convex function on (0, 1) which is bounded above by max{f, -} and
satisfies the condition liI(I)1+g(x) = 00. Then lim sup g,, is non-negative, convex,
T—

bounded above by f and limsup g, (z) tends to oo as z — 0.
Remark: the result becomes false if (0,1) is replaced by (1,00) and the
condition 1ir(1)1+g(z) =00 by lim g(x) = co. In fact if g is convex on (1, 00) and

xi;:igx‘) for 1 < x3 < x and we can choose

lim g(z) = oo then g(x):g(xl) > a(
T—00 r—T1

x1, %2 such that % > 0 so g(z) > ax + b for some a,b € R with a > 0
for x sufficiently large. In particular there is no convex function g on (1,00)
such that lim g(z) = co and g(z) < log(1 + z) for all .

Problem 263
Find {/FdF : F' is a probability distribution on R}.
The integration by parts formula gives /FdF =1- /F(m—)dF(x) [

This is obtained by evaluating (F' x F){(z,y) : « < y} in two ways, using
Fubini’s Theorem]. Thus /FdF >1- /F(:c)dF(:c) and /FdF > 1. Note

that / FdF = % whenever F' is continuous. If dF is the degenerate measure

at 0 we get /FdF = 1. The map F — /FdF from the space of all com-

/FdF— /GdG

< 2||F — G|| where ||F' — G| is the to-

plex Borel measures on R into R is continuous. In fact <

‘/FdF—/GdF‘—k‘/GdF—/GdG

tal variation norm of F'— G. The space of probability measures is convex, hence

connected. Thus { / FdF : F is a probability distribution on R} is connected,

hence an interval. This proves that the answer is [%, 1]. An elementary argu-

ment to show that any number in [%, 1] is of the form / FdF is as follows: let
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F(z)=0for < 0,1 —[1—+/2t—1]e™* for > 0 where ¢ € [§,1] is arbitrary.

Then /FdF =2t—1+ /{1 —[1=v2t=1le "}1 — V2t — 1]e " *dz = t.

0
Problem 264

Let f : (1,00) — (1,00) be twice differentiable with «f”(z) bounded and
lim 1% = . Show that lim f'(z) = a.

r—00

This is a continuous analog of Hardy’s Tauberian Theorem. We write f’(x)—
y

fy) _ f(=)
%z) as y— - yim /(y—t)f”(t)dt where y > . [ This can be proved easily
xr
by computing the integral by an integration by parts]. Let ¢ > 0. Choose A
S f(=)
such that ’@ —a| <eif 2 > A, Then |y—-—*—| <24 = 2ey%f1. Now

y y
y%m/(y—t)f”(t)dt < Cy%m/yT_tdt where C = sup{|zf"(z)] : 1 < z < oo}.

x

Yy
Note that y%x/nytdt = Alylog 2 —(y—x)] = y%fl log -1 < y%:[%—l]—

< QGy%fl ++/€ whenever

A <zand z <y <z(l+/€). Suppose £ =14 \/e. Then z <y < z(14 \/€)
Fla) = L8 < oe ¥l 4 \fe = 2600 e = e2(1 4+ VE) + 1],

x

1= L1 < VEif1 < ¥ < 14ye Thus |f/() - £

and

Problem 265

Prove Uniform Boundedness Principle (i.e. Banach Steinhaus Theorem)
without using Baire Category Theorem

Let X and Y be Banach spaces and {7} : i € I} be a family of bounded
operators from X into Y such that sup{||T;z|| : ¢ € I} < oo for each z € X.
Suppose, if possible, sup{||T;|| : ¢ € I} = oco. Let || T3 > 24 and u; € X
be such that [Jui]| = 1 and ||T}, (u1)|| > 3|75l Let 21 = tui. Then
lzall = 7 and |3, (@)l > § T || = Z 1T, [[l2a]l. Note that ||T;, (1)l > 2.
Suppose we have chosen {i1,4,....,ix} C I and {z1,2,...,2x} C X such that
il = &, | T ()| > 3 (|75 lzsll and || T, (z5)|| > 2{j + Mj—1} where
M; = sup{||Ti(z1 +z2+...+zj)|| : ¢ € I} for 1 < 5 < N (My =0). We
choose in41 such that ||T;,,, || > (3)(4N*!)(My + N + 1) and un1 such that
HTiNH(UNH)H > %||Ti1\7+1|| and |luyyi|| = 1. Let znyq = M%UNH' Then
”‘rNJrl” = 41\1%7 ”EN+1(xN+1)|’ > %HTZN-HH ||xN+1|| and ||TiN+1(mN+1)|| >
2{N + 1+ My}. This completes the construction of {i,} and {z,}. Let
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o oo

o0
=Y ;. Then |Tiy Y || < Tyl Y & = 5Ty llllan]. Thus
j= j=N+1 J=N+1

') N—-1
T @) = T )l = | T D 25| = ||Tiw D
7j=1

j=N+1
> | Tin Nl = 5 1 Tin | Nlan || = My -1 > || Ty (an) ]| = 5 | Tigan]| — My -1 =
1| Tiyzn| — My—1 > n. This is a contradiction.
Problem 266

Give an example of a sequence of continuous functions {f,} on [0, 1] such
b
that sup{ /fn(a:)da: :n > 1.a,b] C [0,1]} < oo but sup{/ |fr(x)|dx : n >
1} = 0.

We can replace [0,1] by [—m,7]. We take f,, = D,, the n — th Dirichlet

kernel. It is well known that / | fn(2)] dz — o0

n n

wa./ﬁl _ /‘Ez eiinda| = | 30 et gl = 2:{¢ﬂ_e ety Ly
yAR E— Pt
J#0

Z %ﬁmn(ﬂz) + b —al|. From the standard fact ( found in most books

j=1
n

on Fourier series) E Smgiﬂ) is uniformly bounded.
Jj=1

Problem 267

Let f be a non-negative trigonometric polynomial. Show that thre is a
trigonometric polynomial g such that f = |g|*.

Assume first that f(z) > 0 for all z. Let p(z) = 2V Z cjz? where

j=N
N
f(z) = E cje®. Then g is an entire function. Note that 22N[p(1)]~ =
j=-N ¢
N N N N
g Y ah = 30 G = B e = 3 e =0
j=—N j=—N j=—N j=—N
N N
[ Since f is real valued we have E cjel? = E cje " = E c_je*
j=—N j=—N i=—N
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which implies c_; = ¢; for all j]. Thus, p(z) =0,z # 0 = p(L) = 0. It follows

that p(z) = cH(z —a;)(z — 1) for some none-zero complex numbers {a; } with
j 4
¢ # 0 if we assume, as we may, that cy # 0. [ The case c_ # 0] is similar].
Now e~ #NVop(ei®) = f(x) and hence f(z) = e_iN’“’cH(e“’ —aj)(e® — L) =
i “
de’t® H(a]— —e)(aj — e) = de'*® H (™™ — aj)|2 and k is necessarily 0 be-
J J
cause f is non-negative. It follows that f = |g|* where g = \/&H(ei’c — aj).

J
Now suppose f is allowed to vanish at some points. Then for each n > 1 there

is a trigonometric polynomial g, such that f = | g,2L| The degree of g, is at
N N
most N/2, so we may write g, = Z cjne®. Since Z |c§7n‘ = ||gn||§ =
j=—N j=—N
s
% [f(z)+ %]dx we see that the sequence {(c_nn, CCN+1,ny s COny s CNom ) }

—T
has a converfgent subsequence in C2¥*1 and so g/, s converge uniformly to a
trigonometric polynomial.

Problem 268

b b
Give an example to show that é%/f(ac, y)dx may not be equal to /a%f(a?, y)dx

even if a%f(:c, y) is integrable on [a, b].

Let

i (wy) £ (0,0)
f(m,y)—{ ( Byi% (z,y) = (0,0)
b

b
Then (%/f(x,y)dw =1 aty=0and /a%f(az,y)dx =0at y = 0. In fact

%f(z, y) is identically 0 when y = 0!
Problem 269

Prove that there exists a Borel probability measure g on R such that p is

differentiable at every point but / || dp(z) = oo.

It is well known that Z ap sin(nz) converges uniformly on R if a,, | 0 and

n=1
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N
na, — 0. [cf. Fourier Series by Edwards]. Let Fy(z) = Zan sin(nz) with
n=2

a, = —+ Let p be the discrete proability measure which puts mass m

nlogn”
at +n and —n for n = 2,3, ..., ¢ being chosen such that p is a probability
0o N
measure. Then u(t) = Z #ggncos(nt). Let Gn(t) = Z #ggncos(nt).
n=1 n=1
R N
Then Gy — p(t) uniformly and G\ () = — Z leOan sin(nt) = —2¢Fy(t) —
n=1

—2c Z ay, sin(nz) uniformly. It follows that /1, is differentiable at all points and

n=1
[e'S)

the derivative is —2c Z ap sin(ne).

n=1

Problem 270

Find a bounded sequence {a,,} which does not converge in Cesaro sense.

(—1)F 2ttt for py < § < njgr. Then s, = —ny,

Let ng41 > 3ng and a; = ERSE—.

if k is odd and ny if k is even.

Problem 271 - -
Prove that Z e Tz — % Z e’ /% for Rez > 0.

n=—0oo n=—oo

Of course, /7 is interpreted in the obvious way: it is e2L09(2) where Log(z)
is the principal branch of logarithm.

This result follows easily by applying the Poisson Summation Formula to
the function e=* /4™ where a > 0 and noting that if the desire formula holds
for z € (0,00) it holds for Re z > 0.

Problem 272

Let H = Ij1/2) — Ij1j2,1) and Hjp(z) = 2/2H (22 — k) for x € R,j € Z
and k € Z. Show that {H; : j € Z,k € Z} is an orthonormal basis of L?(R).

Let j < j'. Then /H(ij—k)H(Qj’m—k')dx: /H(y)H(Qj’*jy—Qj/*jk—
k')dy
1/2 1

= H(27 ~Iy—20" "I =k \dy— | H(27 ~Iy—27""Tk—k')dy. Letl = j'—
0 1/2
1/2 / 1/2

jsol € N. Now H (29 ~Iy—21"~ik—k"dy = H(2'y—m)dy where m =
0 0
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1
211 T

1/2
2'k+k'. But H(2ly—m)dy = / H(z)dz = 0 because /H(z)dz =0
0 —m
1 L L 1"
for any integer r. Similarly, H(2 77y—21 7k —k)dy = H(2'y —m)dy
1/2 1/2

1 2'—m

where m = 2'k + k'. But H((2'y —m)dy = / H(z)dz = 0. We
1/2 2

have proved that {H; : j,k € Z} is an orthogonal set. Since H? = Ijp,1) we

get H? () = 211y (22 — k) = 2jI[i w1y and so /ka(x)dx = 1. Thus

277 27

1-1_pm,

{H, 1 : j,k € Z} is orthonormal.

To prove completeness let f € L%(R) and /f(x)HJk(J:)dx = 0 for all
integers j and k. We have to show that f = 0 a.e.. We first show that
f is a.e. constant on [0,1). Consider /f 1y — I i (@)dr =

L (55, S
/f( )ljo.3) — )" (o — L) = 2—*/f
vided 7 is odd. Thus

( )dx = 0 pro-

Erae
To see that this holds for even Values of i also we use induction on n. It is
easy to see that the result holds for n = 1 and n = 2. Now let j be a positive in-

teger anda:/f( )I[m 2’2“1 dx*/f [2iz1 20 (z)dz (by the previous
case with 4 =25 — 1). Let b= /f x [%7%) x)dx = /f(x)l[zg#gé#)(x)dx
(by the previous case with ¢ = 25 +1). We have 2a = /f(x)I[Zi—Q 2]2'7;1)(1')dx +
/f(x)l[zg PN )dx—/f s 2@ dx—/f I s (@) and
2b:/f( )I[QTH dx+/f (251 2042 dx—/f I[zl 242 (z)dz =
f@) o )(m)dx. However induction hypothesis implies that /f( a1} i

y(z)dw =

)
on—Tr5n—1 on— 1’277, T

/f(m)I[ it1 ) (x)dz for all i (even or odd) and so 2a = 2b and a = b. So

A TionoT

/f(l')[[%%l722%)(x)d.’lj = /f(x)l[%gg#)(x)dx showing that the desired rela-

tion holds for 7 even.
{[2"z]+1} /2"

Now let z and y be Lebsgue points of f in (0,1). Then f(z) = lim 2" / f(®)dt

[2na] /27
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{[2"y]+1} /2"
and f(y) = lim2" / f(®)dt. Tt follows that f(x) = f(y). Thus f is a

[2my]/27
constant a.e. on (0,1). Note that f(x + m) is also orthogonal to H;j for all j

and k. We conclude that f is a constant on each of the intervals (n,n+1). Now
2k+1

= 2VH_1 p(z)dx = 271/2 T z _ « which gives z)dr =
0= [ @ H ruw)ds = 2772 [ F@)H( - byde which g QZf()d

2k+2
f(z)dz. Thus, if ay is the constant value of f on (k, k+1) then asr = aop41.

2k+1
This means that f is constant on (0, 2), (2,4),... (and (—2,0(—4, —2),...). A sim-

ilar argument using the fact that / f(x)H_3 ;(x)dz = 0 for all k shows that f

is a constant on (0,4), (4,8),... (and similar result on negative real axis). An
induction argument now shows that f is a constant on R. Since f € L? it follows
that f =0 a.e.

Problem 273

Let H; j be as in Problem 272. Forn = 27+k,j =0,1,2,...k € {0,1,...,27 —
1} let ¢, (z) = 27/2H(2/x—k) and define ¢y (z) = 1 for all z. Show that {,, }n>0
is an orthonormal basis for L?[0, 1].

Define f to be 0 on R\[0,1] and think of f as a function in L*(R). If f

is orthogonal to each ¢, then it is orthogonal to H;j for j = 0,1,2,....k =
0,1,..,27 — 1. If k < 0 or k > 27 then Hjj vanishes on (0,1) for any j € Z.

If j < 0and k& > 1 then also Hjj vanishes on (0,1). Thus /ij’k =0in

these cases. For £ = 0 the hypothesis implies / f =0 and this gives / fHjr =

1
/f — 0 =0. It follows from Problem 272 that f =0 a.e.
0

Problem 274

Show that there is no f € L?*(R) such that the functions f,,(z) = f(z—n),n €
Z form an orthonormal basis for L?(R).

0 ~
Any g € L*(R) is of the type Z anf(x —n) (L? sum). This gives g(t) =

n=—oo

-~ o0
m(t) f(t) a.e.. where m(t) = Z ane~ . Choosing g such that g is continuous

n=—oo
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and never 0 we conclude that {¢ : f(t) # 0} is a null set. Now I(,1/271/2)}
belongs to L?(R) and hence there exists g € L?(R) such that g = I(_1/271/2)} .
But g(t) = m(t)];(t) a.e.. and this gives 1(71/2’1/2)} = m(t)}(t) a.e.. Combined
with the fact that {¢ : f(t) # 0} is a null set we get I(_1/2,1/2) = m(t) a.e.. This
is a contradiction because m has period 27.

Problem 275
[This problem extends Problem 274]

Show that there is no f € L?*(R) such that for some constants a, 3 with
0 < a < 8 < oo the inequlaities

oo
& Z |an|2 <

n=—oo

00 2

Z anf(w_n)

n=—oo

<p Z \an\z for every finitely non-
2 n=—oo
zero sequence {a, } and such that the closed subspace spanned by the functions
f(x —n),n € Zis all of L*(R).

2

It is a well known fact that the hypothesis implies a < Z ’ flz+2nm)| <

n=—oo

B a.e. [ See p 22 of Wojtaszczyk or p 306 of Pinsky].
(oo} ~
Let g(z) = Z anf(z —n) where {a,} € [*>. Then g(t) = m(t)f(t) where

n=—oo

oo
m(t) = Z ane~ . We have

n=—oo

2

i ’é(w+2mr)‘2 = i ’}(m+2n7r) |m(t)|2. We can choose {a,}

such that |m(t)|* = = hl — since the right side of this equation
27 Z 'f(z+2n7r)‘

is a bounded measurable function ( and hence an L? function on [0,27]). It
- 2

then follows that Z ‘g(m + 2n7r)‘ = - a.e. which implies ( by the con-

verse of the result mentioned above) that {g(x — n)} is orthonormal. Also
f@t) = [m(t)]’lé(t) and [m(¢)]~! is also a periodic L? function. This shows
that f(z — k) = Z bng(x —n — k) where {b,} € . It follows that f(x — k)

belongs to the closed subspace spanned by {g(z —n) : n € Z} for each integer
k. Combined with the hypothesis this implies that {g(z —n) : n € Z} is an
orthonormal basis for L?(R) and this is impossible by Problem 274.
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Problem 276

Let P be the Borel probability measure on R with density m Define
T:R—RbyT(z) =2%(x—1/z)if z # 0 and T(0) = 0. Show that T is a
measure preserving transformation on (R, B, P), i.e. PoT ! =P

Let f be a continuous function with compact support. We prove that
/fdP oT7! = /fdP. Note that f(T(x)) = 0 for |z| sufficiently small.

Consider /f % x — 1/x))dP(x /f )dP(y). [ Note that dor =

1
w(14+x2)

) 1+ﬁdy— rE W

= Wdy = %dP(y) where iy = %(m 1/z)]. Also /f % x—1/x))dP(zx)

/g(%(m — 1/x))dP(x) where g(x) = f(—z) and so /f % z —1/x))dP(z) =

0

%/ g(y)dP(y %/f )dP(y). This completes the proof.

Problem 277

Let {a,} be a bounded sequence of complex numbers and 0 < p < co. Show

n—1 n—1
that L Z lax| — 0 if and only if L Z lag|” — 0.
k=0 k=0
n—1
It suffices to show that %Z lax| — 0 if and only if there exists I C
k=0

{0,1,2,...} such that §ZIlim a, = 0 and w — 0 as n — o0o. Sup-
n—1 ’
pose 72|ak\ — 0. For k =1,2,...let I, = {n >0 : |a,| > £}. Claim:
k=0
w — 0 as n — oo for each k. Indeed, this follows from the in-
n—1
equality %Z lak| > w There exist integers 0 = ng < np < ...
k=0

such that n > nj implies w < % Let I = U{Ik+1 N [ng, nk11)}-
k=0

N U [Tgx1 N [O n)]. Hence

1

Let ni, < mn < ngy1. Then IN[0,n) C [Ix N[0, ng
<4< k+k+1' We have

#{m[o n)} < #{IW[OM)} + #{1k+1ﬁ[0 n}
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provedthatW%Oasn%oo. Ifn>n, andn ¢ I then n ¢ Ipyq (

for, otherwise, there exists p > k such that n, <n <mn,11 and n € I C I,
son € Ipp1 N [ng,nyp1y C I which is a contradiction). Thus |a,| < ITrl for
n > ng, n ¢ I completing the proof of one the ’only if” part. For the ’if’ part let
|an| < C and let € > 0. There exisrs n, such that |a,| < € if n > n. and n ¢ I.

#{IN[0,n)

Also there exists m. such that b ceifn > me. For n > max{n.,m.}

n
we have %Z lak| < e+ €C.

k=0
[We have proved a stronger result than what was stated. In particular we
n—1 n—1
have proved that = Z la| — O implies = Zf (ap) — 0 for any bounded
k=0

positive function function f continuous at 0 See Problem 294 for a related
result].

Problem 278
Show that any positive linear operator T' from LP(u) (where 1 < p < o0)
into itself is bounded.

If T is not bounded the there exists {f,} C LP(u) such that |f.[, =
and ||Tf.|, > n®. We may also assume that f),s are non-negative. Let f

o0

N
Z ff‘ [ The series converges in LP]. We have /(Tf)pdu > /(TZ %)pdu >
1 k=1

=
Il

] =

/ f" YPdu > Z 2 = N for every N which is a contradiction. [ We have

=
I

1
N N

used the fact that (Z an)? > Zaﬁ for all non-negative numbers a,, which
k=1 k=1

follows from the fact that t — t* 4+ (1 —¢)P,0 < ¢t < 1 attains its maximum at

t =1 and the maximum value is < 1, so a? + b < (a + b)? for a,b > 0].

Problem 279

[This is a standard result that follows from approximation of irrationals by
rationals]

If « is a an irrational number in (0, 1) show that the numbers {na(mod1) :
n € N} is dense in (0,1). [Equivalently, if ¢ is a complex number which is not
a root of unity such that |c| = 1 then the set {1,c,c?,...} is dense in the unit
circle].

By a well known result in Number Theory [cf. Hardy and Wright' Theory

— n Note

of Numbers] we can find positive integers p,, g, such that ‘oz
pu=[V@ _ el _

dn dn

q'n,

that p,,q, — oo and a — (a_%)>[q@_q72>0
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and a— M < Wl + -4 — 0. This shows we can assume (by changing

qr an qn
pps if necessary that) 2= T a. Now 0 < gna — pp = gufo = £2] < i It follows
that the set {na(mod 1) : n € N} contains a sequence {r, } decreasing (strictly)
to 0. Now let 0 <a <b < 1. Let r € {na(modl) :n € N} with0 <r < b—a.
The interval (%, %) has length 2= > 1 and hence it contains an integer k. Since
2 > 0 it is clear that k is a positive integer. Thus k7 is a point of (a,b) which
belongs to {na(mod1) : n € N}.

Second proof: let |¢|] = 1 and assume that ¢™ # 1 for any positive integer
n. Since ¢, c?,c?, ... are all distinct and this sequence has a convergent subse-
quence. This subsequenec is Cauchy, so given € € (0,1), we can find 1 <n <m
such that |¢" —¢™| < e. Let ¢ = €",0 < t < 27 and consider the points
eitn’eitn-i—i(m—n)7eitn-‘r%(m—n)’ -“’eitn—i-iN(m—n). Of course there is a smallest
integer N such that tn + N(m — n) > 2x. The distance between any two
points consecutive points of {e#", gitntilm=n) gitn+2i(m=n) __citn+iN(m-n)} i
less than e. This gives a finite subset of {c,c?,¢?, ...} such that any point of S*
is at distance less than e from this finite set.

[ More precisely, if 0 < s < 27 then tn+1(m—n) <s <tn+ (+1)(m—n)
for some ! and ’e“ — et7‘+l(m_7‘)’ < ’em"’l("”_”) — et""’(l“)(m_")‘ < € since
0<a<fB<y<2m|e*—el <e= |e"°‘—ei5|2 =2—2cos(a— ) <
2—2cos(a—7) = |€m — e”|2 where we used that fact that 2 —2cos(a—7) < €2
so cos(a — ) > 1 —€?/2 > 0 which implies |@ — 7| < 7/2 and hence that
cos(a — fB) > cos(a — )]

Problem 280

Using the fact that any continuous additive map from R into itself is constant
times the identity give an elemenatry proof of the fact that the circle group has
only two continuous automorphisms, the maps a — % and the identity. Also
find all continuous homomorphisms of S*.

Remark: Problems 612 and 613 have stronger results with different proofs.

Let T : S' — S! be a continuous homomorphism. Note that T'(1) = 1.
Define f : R — R by f(t) = T(e**). Then f is continuous, f(0) = 1 and
never vanishes. Fix a positive integer N. On [—N, N| we can find a continuous
map gy (a continuous ’logarithm’ of f)such that f(t) = e2™9v(®") N <t < N
and gn(0) = 0. | Logarithms exist locally on S' and we can patch up local
logarithms using compactness of [N, N||. Now gy are consistently defined in
the sense gy = g1 on [—N, N]. [ 2™~ (1) = ¢2mign+1(t) shows that gn 11— gn
is an integer valued continuous function, hence a constant. Since it vanishes at 0
we get gv = g1 on [—N, N]]. We conclude that there is a continuous function
g : R — R such that T'(e2™*) = ¢>79(%) and ¢(0) = 0. Since g is continuous and
g(t 4+ s) — g(t) — g(s) is integer valued [ because e27H9(t+s)=9()=9() = 1] we
see that g is a continuous additive real function on R and hence there is a real
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number a such that g(¢) = at for all t. Thus T(e*™®) = f(t) = e2™9(t) = ¢2miat,
Now note that 1 = T(1) = T{(e™)?} = {T(e™)}? = €27, Hence a is an
interger, say m and T'(z) = 2™ Vz € S'. In particular, if T is a bijection then
m==+1and T(z) =z or T(z) = 27 L.

Problem 281

Find all continuous automorphisms of the torus S! x S' (coordinate-wise
multiplication)

Let T be an automorphism of the torus S! x S*(which is a group under
coordinatewise multiplication). Let Tj(z) be the first coordinate of T'(z,1)
and T5(z) be the second coordinate of T'(z,1). Let T5(z) be the first coor-
dinate of T'(1,z) and T4(z) be the second coordinate of T'(1,z). Then T} is
a homomorphism of S' for j = 1,2,3,4. Hence there exist integers j,k,n,m
such that Ty (z) = 27,v,Ta(2) = 2F,T3(2) = 2", Ty(z) = 2z™. It follows that
T(a,b) = T(a,1)T(1,b) = (a’,a®)(b",b™) = (a’b",a*b™). We have to deter-
mine when this map is an automorphism. If T is an automorphism the so is 7!
and so T~ (a,b) = (a?'b",a¥'b™") for some integers j',n’, k', m’. We now have
(a,b) = TT Y (a,b) = (afi' K npin'tm'n_qj'ktk mpn'ktm'mygq p e 61 This im-
plies jj' + k'n =1,jn" + m'n =0,k + k'm = 0 and n'k + m'm = 1. In other

/ !
words :1 J > ( I(f, ZL, > = 1. Taking determinants and noting that the

k J
determinants of the two matrices are integers we conclude that nk — mj = +1.
Conversely suppose nk—mj = £1. The inverse of < :1 i has integer entries

because the detrminant is £1 and the adjoint has integer entries. Thus there is
a transformation of the type S(a,b) = (a/ b ,a¥ b™) with TS = I = ST. Tt
follows that T is bijective with an inverse which is also a homomorphism. The
inverse is automatically continuous.

Problem 282

Let X be a compact Hausdorff space. Show that C'(X) is separable if and
only if X is metrizable.

o0
Suppose C(X) has a countable dense subset { f, }. Define d(z,y) = Z m
n=1
Since {f,} separates points it is clear that d is a metric on X. Consider the
identity map : X — X where the domain is given the original topology and
the range is given the metric topology. To prove that this map is continuous
consider an open ball B(z,r) in (X,d). Let y be in this ball. Choose N such
N

that 5k < r —d(z,y). We claim that if z € ﬂ 7t |t — fi(y)] < €} then

i=1
N

z € B(z,r) provided ¢ is sufficiently small. Since ﬂ Tt t— fi(y)] < €}

=1
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is an open set in the given topology which contains y we can conclude that

the identity map is continuous; its inverse is automatically continuous since

X is Hausdorff with the metric topology and compact with the original topol-

ogy. Thus we can conclude that d metrizes the given topology on X complet-
N

ing one part of the statement. So let z € ﬂ fHt |t — fi(y)| < €}. Then

i=1
[e's) ’ N
d(z,2) < d(z,y) Z 4|{$|;3<‘{n;3211>|1 <d(z,y) + LN + Z 24{%(?,3(2@}3?1',)‘]
n—1 =1
N n
1 € 1 if —<
<d(x,y)+2N+1+€ZzN <rif {5 <r—d(z,y) — 35. We now prove

n=1
the other half of the statement. Let d be a metric for the topology of X.
Let {x,} be a countable dense subset of X. For each n open balls of radius

% around the points x; cover X and hence there exists an integer k, such

kn
that X = U B(z;, n) For each n and ¢ < k,, there is a continuous function

i=1

fim + X — [0,1] such that f;,, = 1 on the closed ball around z; with radius
ﬁ and 0 in the complement of the ball B(z;, %) Let M be the collection of
all finite linear combinations of finite products of the functions {f; ,}. This is
an algebra. If we show that the functions f; ,. separate points of X it would
follow by Stone-Weierstrass Theorem that M is dense in C'(X) and we can then
conclude that rational linear combinations of finite products of the functions
{fin} give us a countable dense subset of C(X). If  # y then there exists n
such that 2 < d(z,y). If z € B(z;, 1) then f;,(z) = 1 and fi,(y) = 0. This
completes the proof.

Problem 283

Prove or disprove the following:

1) if f is monotonically increasing on [a,b] then we can find continuous
functions f,,g, (n = 1,2,...) such that ¢,, < f < gn,9n | f and ¢, T f
pointwise.

2) if f is Riemann integrable on [a, b] then we can find continuous functions
@y gn (n = 1,2,...) which are uniformly bounded such that ¢,, < f < g, and

— ¢,, — 0 almost everwhere.

The first statement is false: f = inf{g,, : n € N} implies that f is upper semi-
continuous and f = sup{f, : n € N} implies that f is is lower semi-continuous.
Thus f is necessarily continuous

k
2) is true. Let {¢; : 1 <14 < k} be a partition of [a,b]. Let g = Zmil[ti—hti)
i=1
k

and h =Y M
1=1

ti_1,t;) Where m; and M; are the infimum and the supremum
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of fon [ti—1,t;]. Let € > 0. Let 1 < ¢ < k. If M;_; < M; we modify h on a
smal interval to the left of ¢; and if M;_; > M; we modify it on the right in
such a way that the modified function still dominates f and it is continuous at
t. By this procedure we can find piece-wise linear continuous functions G and
H such that G < f < H and m{x : g(z) # G(z)} < e,;m{z : h(x) # H(x)} < e.
Taking a sequence of partitions such that h, —g, — 0 a.e. for the corresponding
functions g, and h, and then choosing piece-wise linear continuous functions

G, H, with m{z : G, # gn} < % and m{z : H, # h,} < 2%, If © ¢

limsup{z : G,, # gn} Ulimmsup{z : H, # h,} and g,(x) — h,(z) — 0 then
we get Gp(z) — Hp(z) — 0. It is known that g,(z) — hp(z) — 0 ae. and
this completes the proof. [ A trivial modification makes the functions G,,, H,
uniformly bounded].

Problem 284
Use previous problem to prove the following result of Weyl:

if f € C[0,1] and T'(z) = x+amod(1) where « is irrational the L Z f(Tkx)

1
/ f(x)dx uniformly for any Riemann integrable function f.

0

For continuous f this result is proved using The Ergodic Theorem and a
Functional Analytic argument (which is outlined below) For f Riemann in-
tegrable choose approximating continuous functions as in part 2) of previuos

problem. We have + Z(;S (Trz) — /(;S Ydx and + Zgj (Trz) — /gj

uniformly for each fixed j. Note that / ¢;(z)dr and / g;(z)dx both converge
0

1
to / f(z)dz by Bounded Convergence Theorem. These facts, together with
0

|
—

n—1 n

the inequalities 1 Z ¢;(TFz) < & <1 Z k2) clearly imply

>
Il
=)

1 Zf (TFz) — /f )dx uniformly.

k=0
[ We now sketch a proof of the result for continuous f. Suppose the re-
sult is false. Then there exists € > 0,n; 1 oo and points x(j) such that
nj—1
Z F(TFx( /f > eforall j. Let P; = Z d7r(2(5))- By separabil-

n;—1

ity of C’ [0,1] and Banach Alaoglu Theorem we can ﬁnd a subsequence {j;} and
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a measure ) such that /thj, — /th for any h € C|0, 1]. Since /th >0

for non-negative h and since / 1dQ = lim / 1dP;, = 1 we see that @) is a probab-
’ﬂjfl
bility measure. By definition of the measures P; this gives n—lj Z h(T*z(5)) —

k=0
n;—1

1 1 1
/th. Hence /thoT—lz/ (T(y))dQ(y hm— Zh T o Tkz(5)) =
0 0

lim - Zh (T*z(j)) = lim - > W(T*z(j)) (since h is bounded) and this

j—oo i

1
gives / hdQoT~! = / hdQ for any continuous function h. Taking h(z) = e*™"®
0 0
1 1
we get /egﬂi"(”*‘“)dQ(x) = /ez’ri"”dQ(x) by the definition of 7" and we
0 0
1

1
get 62””0‘/62””dQ(:E) = /e%imdQ(:E). Since « is irrational this gives
0 0

1 1 1

/eQ”i”de(x) = 0 for all n # 0. Bu then /eQﬂimdQ(x) = /ezmmdm‘ for

0 0 0
1 1

all n # 0 and hence / pdQ = / p(z)dx for any trigonometric polynomial p.

0 0
It follows from Fejer’s Theorem that the same holds for all continous func-

tions p. Thus Q(x) is nothing but the Lebesgue measure on [O 1]. However

n;—1

n Z f(Tra( /f > ¢ for all j implies that /fdQ /f > € which is

a contradlctlon

PROBLEM 285 [BY K B ATHREYA]

n
Let p,, = % Z log k—[log k] Where log denotes logarithm to base 2 and [z] is
k=1
the greatest integer not exceeding x. Does this sequence of probability measures
on [0, 1] converge weakly?
[ Weak convegence here is actually weak™® convergence in C*[0, 1]]

We claim that p,, — p where du(z) = (log, 2)2*dz. Bt Stone-Weiertstrass
Theorem it suffices to show that /fdn — /fdu if f(x) = 2" where c is a real
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n logn—12m+t1_1
number. For this f we have /fdn = %ZQCUOM_[IO@? K = % Z Z ke27me+
k=1 m=0 k=2m
%QC[log”_[log"”. Of course, the last term tends to 0. Now, assuming that

gm+1_1 gmtl
(m+1)(c+1) _om(c+1) 1 _
c >0 g ke < xldr = 2 2 = gmeom2 =1 and so
) c+1 c+1
k=2m om
logn—12m+tl_1 logn—1
1 E E co—mece 1 E m2°ti—1
n k 2 S n 2 c+1
m=0 k=2m m=0
om+1_1 om+l_q
_ 1 26t 1 el c cdp
= o(n—1)=7 — =7 asn — oo. Further g ke > xtdr =
k=2m am—1
{amHl_1jetl_gom_qye+t
c+1
_ 9omcom _1 _ 1 Ne+1 _ 1 ye+1 1 Ne+1 _ 1 \et1
=2m°2 c+1{(2 2m) (1 27") } and {(2 Qm) (1 Qm) } -

logn—12m*l_1
. .. _ cr1_
2¢t1 _ 1 which shows that lim 1nf% E E keo—me > 2 T L We have
m=0 k=2m

2¢tl_1

proved that /QCmdﬂn(x) — = /2“du(m) for all ¢ > 0. A similar

c+1
argument holds for ¢ < 0.

Problem 286

Let P be a Borel probability measure on a compact metric space X such
that P(A) =0 or 1 for any Borel set A. Show that p = J, for some z € X.

For each n let {A,,_;} be a partition of X into sets of diameter at most %
By hypothesis there exists i,, such that P(A4; ) = 1. Let C,, be the closure of
A;,. Then P(C,) =1 and hence P(C; N CeN...NCy) = 1 too. The family
{C,,} therefore has finite intersection property and hence there is a point z in
their intersection. But the diameter of C, tends to 0 so {z} = NC,,. It follows

that P{z} = 1.

Problem 287

Let f and g be non-negative measurable functions on [0, 1] such that / f(z)dx <
E

00 = /g(m)dm < 00. Show that g < C'f + h for some non-negative integrable
E
function h and some C € (0, c0).
We prove the following stronger result: if 4 and v are positive non-atomic

mesures on (€2, F) such that u(E) < co = v(E) < oco. Then there exists a
finite positive measure A and C € (0,00). such that v(E) < Cu(E) + A(E) for
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all F € F. Once this result is proved we can take u(E /f, /g to

get /g < C’/f—i—)\(E) and define h = max{g — Cf,0} so that ¢ < Cf + h.
E

Note that /(g — Cf) < ME) for all E which implies /(g - CAHT < XNEN
B E

{g—Cf >0}) < AE). Thus /h < A([0,1]) < oco. Now suppose p and v are

as above. We claim that there exists C' € (0,00) such that u(E) < 2 implies
v(E) < C. If this is false then we can find sets {E,,} such that pu(E,) < 2 but

n—1

v(E,) > 2n+t 4 Z v(E)) and v(E,) < oco. [ The last sum is taken to be 0

k=1
when n = 1]. Let A, = E,\{E1 UEyU ...UE,_1} so that A/ s are disjoint,
no1

p(Ay) < 2and oo > v(A,) > v(E,) — Z v(Ey) > 2" We can write A,
=1

=

on
as a disjoint union U A, ; with v(A, ;) =1for 1 < j < 2" and v(Apn) >
j=1
2’71
2"+l — (2" —1) > 1. Since Y p(An,;) = p(An) < 2 we can find j, < 2" with

Jj=1
pw(Anj,) < 2— =271 Let A = U Ap .. Then p(A4) < 221 " = 2 but
j=1 Jj=1
v(A) = ZV(ATLJ") > Zl = oo contradicting the hypothesis. This proves
j=1 j=1

our claim. We now show that v(E) < Cu(E) + C for all E. We may suppose
p(E) < co. Let n—1 < p(E) < n. Write E as a disjoint union U E; with

Jj=1
pw(Ej) =1 for j <n and p(E,) < 1. We have v( ZV ) < Cn (by the
j=1
n—1 !
claim). Hence v(E) < Cn = C’Z )+ C < C(u(E) +1) as asserted. Let

A= (v—=Cu)*. Nis a positive measure and A\(F) > v(E)—Cu(FE) sov < Cu+A\.
Also A(E) = (v — Cu)(E N F) where {F, F°} is a Hahn decomposition of the
signed measure v — Cu. So A(E) < C for ane F proving that A is a finite
measure.

Problem 288
Let X be a non-empty set and let 7 be the smallest topology that makes a
given function f: X — R continuous. Let g : (X,7) — R be continuous. Prove
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or disprove that there exists a continuous function A : R — R with ¢ = h o f.
Answer the same question for measurable functions.

For measurable functions the result is true and the proof follows easily from
simple function approximation. If f : R — R and g : R — R are defined by
f(z) = eIl and g(x) = el*! then g = 1 and hence g is continuous w.r.t. the
topology generated by f. However if h : R — R is continuous and g = ho f then
h(t) = 1 for all t € (0,1] which contradicts continuity of i at 0. Note however
that under the hypothesis of the problem f(z) = f(y) = g(z) = g(y) and we
can define h on the range of f by g = ho f. Further it is easy to see that h is
continuous on the range of f. Extending h to a continuous function on R is not
always possible.

Problem 289

Let (Q, F, 1) be a measure space. Show that the TFE:
1) L? C L4 for some p < ¢ in (0, 00)

2) inf{pu(E) : p(E) >0} >0

3) LP C L7 for all p < ¢ in (0, 00)

We prove 1) implies 2) and 2) implies 3). Since 3) obviuously implies 1) the
proof would be complete. Let 1) hold. Note that LP* C LI¢ for all a € (0, 00)
so we may suppose p > 1. Let T' : LP — L% be the inclusion map. This
linear map has closed graph. Hence it is bounded. Let [|f|, < C'[|f], for all

f € LP hence for all measurable f. Then p'/9(E) < Cu'/?(E) for all E. We
get inf{u(E) : u(E) > 0} > c = and 2) holds. Now let 2) hold and 0 <
p<q<oo. Let feLP. Let A, = {|f| > n}. Since u(A,) < n_p/ |fI” dp — 0
we conclude from 2) that p(A4,) = 0 for n sufficiently large. Thus f € L* and

/ I du < ||f||‘3;p/ P dp < o0
Problem 290

Let (2, F, 1) be a measure space. Show that the TFE:
1) L2 C L? for some p < ¢ in (0, c0)

2) sup{u(E) : u(E) < oo} < o0

3) L9 C LP for all p < ¢ in (0, 00)

Let 1) hold. As in Problem 289 we may suppose p > 1 and use Closed
Graph Theorem to conclude that || f[[, < C'[/f]|, for all f € L? hence for all

measurable f. Thus p'/P(E) < Cu'/9(E) for all E. Tt follows that u(E) <

c=1)" whenever #(E) < oo so 2) holds. Thus 1) implies 2). Now let 2)
hold. Let f € L? and 4, = {n%_l < |f] < 2}. Then u(A,) < co and hence

plAn) < € = sup{u(E) : u(E) < oo} Also (| Aj) = D (4;) < oo and

Jj=1
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n

2) implies Zu U i) < C for all n. Thus Z,u(Aj) < 00. Now

JRE /{W |fpdu_+2 / 1P dp

</ Iflqdu+zj (A /|f|qdu+zu ) < oo, Thus 2)
{If1>1}

implies 3). Of course 3) 1mphes 1).

j=1

Problem 291

For a measure space (2, F, u) TFE:

1) LP ¢ L% whenever p and ¢ are distinct numbers in (0, c0)

2) inf{u(E): 0 < p(E) < oo} =0 and sup{u(E) : 0 < u(F) < o0} = o0

3) for any convex set I C (0,00) there exists a measurable function f on

such that {p € (0,00):/|f\pdu< o} =1

Let 2) hold. We shall construct measurable non-negative functions f;,i =
2,3,4 such that {p € (0,00) : /|f1|pdu < o0} == (0,1),{p € (0,00) :

1807 du < o0} = (0.1,

(p € 0.0+ [ Ifldu < o0} = (Loo) and {p € (0.00) : [ Il du <
oo} = [1,00). Once such functions are constructed we can easily conclude that
3) holds: just note that the collection Z of all convex sets I C (0, 00) for which
there exists a measurable function f on Q such that {p € (0,00) : / IfIP du <

oo} = I} has the following properties: I;.Jo € Z implies 1 NIy € Z and I € T
implies «f € T for any a € (0,00). We first note that there exists sets E,,,n =
1,2,..such that 0 < p(E,i1) < $u(E,) < oo. Thus p(Enir) < (3)*u(Ey)

and Z“(E") < oo. If F,, = E;\{Fp11 UFE,12U..} then F!s are disjoint

o0

and p(Fn) > p(Ey) — p(En N {Epy1 U Epia U }) > u(Ey) — Z n(Ej) >
j=n+1
p(En)(1— Z (3)77") = 0. Thus F,s are disjoint sets of positive measure. Let
j=n+1

= Z,u(Fj) .Let f1 = Zx;llpn and fo = Zmlpn. fo<p<l1

then /ffdu = Zaﬂ,’“u(Fn) = Zx;p{xn —Tpy1} < Z / t7Pdt < co. Also

Tn+1
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/f1d,u = Zx;l{xn — Tp41} = 00 since x, decreases to 0. [ See Problem 292
below]. Since fo < fi it follows that /fé’du < oo for 0 < p < 1. We claim that

/fgd,u < 0o. This follows from the fact that Z m(xn — Zpy1) <

Z / 1+log e de = / [1+1og Sz < arctan(log 1) + 7/2 < co. Finally we
Tpt1

construct fo, f3 as follows. there exist disjoint sets B, with 1 < u(B,) < co.

[Let [L(An+1) > ,LL(Al) + [L(AQ) + ...+ /J,(An) +1and B, = An\{Al @] AQ U...u

An—l}]' Let Yn = ,U(Bl) +/L(BQ) +ot /U‘(BTL) and f3 = Z ! IBn+1af4 =

Yn+1

ZmIBnH‘ It can be shown that {p € (0,00) : /\f3|p dp

A

oo} = (1,00) and {p € (0,00) : / |f4]? dpu < 0o} = [1,00). Thus 2) implies 3).

The fact that 1) and 2) are equivalent follows by Problems 289 and 290 above.
3) implies 1) is straightforward.

[ Problems 289, 290 and 291 are due to Villani]
Problem 292

If {x,,} decreases strictly to 0 then Z L (z,—2p41) = co. If {z,,} increases
strictly to oo then Z

7oy (Tng1 —an) =00

Let {x,} decrease strictly to 0. If Z %ﬂ(xn—xnﬂ) < 00 then T;—:l — 1 and

Ty — Tpt1) > Z / Ldz =

Tn41

i(xn - mn+1) 2 an_H ( anrl
/ Ldx = co. The second part follows by replacing {z,,} by {z,'}.
0

Problem 293

Let X be a compact Hausdorf space. Show that C(X) is finite dimensional
if and only if X is a finite set.

If X is finite then C(X) € C¥ (or R¥ if we are considering real valued
continuous functions) which is finite dimensional. Suppse C(X) is finite di-
mensional. Then so is its algebraic dual. {x,} is a sequence of distinct points
then it follows by Urysohn’s Lemma that f — f(z,),n = 1,2,... are a linearly
independent in this dual space.
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Problem 294

Let {a,} be a bounded sequence of complex numbers and 0 < p < oo. Use an

n—1 n—1
elementary argument to show that < Z lax| — 0 if and only if < Z lag” — 0.
k=0 k=0

What conclusions can be drawn if {a,} is not assumed to be bounded?
[See also Problem 277 above].

n—1
Let S = {p € (0,00) : %Z lag|” — 0}. It suffices to show that S has the
k=0
following properties:
a)peS,gq>p=q€S
bype S=p/2€S
Proof of a) is obvious: |ag|? < C97? |ag|” where C = sup{|ax| : k € N}

n—1 n—1 n—1
b) follows by Cauchy Schwartz inequality: 1 Z |ak|p/2 < %{Z 1}1/2{2 lax|P}/? =
k=0 k=0 k=0

n—1
{2 laxl}1/?

IIC\T(?W let {a,} be arbitrary. An application of Holder’s inequality (in place
of Cauchy’s inequality) shows that p € S,q < p = g € S. Thus, if A # () then
A = (0,a) or (0,a] for some a > 0 unless A = (0,00). If a,, = 2k~ if n = 2%
and 0 if n is not a power of 2 then A = (0,1). If a,, = 2%1 ifn=2%and 0ifn
L)+ (P o 1 142n (25D

2k = 2k =
—ooask —ooifp>1s0AC(0,1]. The reverse inclusion is easy].

is not a power of 2 then A = (0,1]. |

1 2kPq
kP 2F (2P —1)

Replacing {a,} by a suitable power we get examples where A = (0,a) and
those where A = (0,a] for any given . Thus, in all cases A = 0, A = (0, 00),
A = (0,a) for some a € (0,00) or A = (0, ¢ for some « € (0, 00).

Remark : if f is a bounded measurable function on (0, 00), {1, } is a sequence
of probability measures on (0.00) and p € (0, c0) then / |f] du,, — 0 if and only

if / | fI” du,, — 0. This equivalence fails if f is just locally integrable. (Special

case: W, is the normalized Lebesgue measure on (0,7)).

Problem 295

o Let (2, F, ) be a non-atomic finite measure space. [ Non-atomic means
there are no atoms,i.e. there are no sets A € F such that p(A) > 0 and
every set B € F which is contained in A satisfies the property u(B) = 0

or j(B) = p(A)]
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Prove Sak’s Theorem that there exists a sequence of sets whose measures
decrease strictly to 0. Use this to prove the stronger result that 0 < a < u(A)
implies there is a measurable subset B of A with u(B) = a.

[ See also Problem 188 above]

For the first part we have to show that r = inf{u(A) : u(4) > 0} = 0. If
possible let 7 > 0. There exists B C Q with 0 < pu(B) < u(2) and this implies
w(B) > r and p(A\B) > r. Let E; = Q\B. Now repeat the argument with B
in place of Q. [Note that the measure of any subset of B with non-zero measure
is > r]. We get C' C B such that u(C) > r and u(B|C) > r. Let E; = B\C. An
induction argument produces a disjoint sequence of sets {E,,} with pu(E,) >
for each m. Since this contradicts countable additivity we must have r = 0
and we have proved Sak’s Theorem. [For the second part we use an argument
given in stackexchange.com]. We may suppose A = Q. Let 0 < a < u(92). We
construct a sequence {4, } of disjoint measurable sets such that u(D,,) < a for
all n where D,, = A; U As U...UA,. Let A; be any set with 0 < p(4;) < a.
Suppose we have constructed A1, As, ..., A,,. We consider the following classes
of sets:

Fo={CeF:CnD,=0and 0 < u(C) <a—pu(Dy)}

G, ={C e F:CnNnD, =0and 1/n < pu(C) < a—pu(Dy)}. If G, #
0 pick A,11 € G,. Otherwise pick any A,.1 € F,. [ By Sak’s Theorem
it is clear that F, is non-empty]. Then A;, A, ..., A,, A1 are disjoint and
p(Ay UAs U ..U An1) < p(Dy) + p(Ant1) < p(Dy) + a — pu(Dy) = a. Thus
we have proved the existence of a sequence {A,} of disjoint sets such that
w(A1UAsU..UA,,) < afor all n. Tt follows that p(A) < a where A = AjUA5U....
To complete the proof we show that u(A) = a. Suppose, if possible, u(A) < a.
There exists B C A° such that 0 < u(B) < a — u(A). For n sufficiently large we
have 1 < ;i(B) < a — p(A) < a — p(D,,) which proves that G, # 0 and hence
Aps1 € Gp. Thus % < u(Ap41) for all n sufficiently large contradicting the fact

that Z,u(An) < 0.
Problem 296

Let f : R — R be continuously differentiable and 6 = inf{f’(z) : z € R} > 0.
Show that f(z) = 0 for some x.

f(x) — f(0) > o0x for all x > 0 so f(x) > 0 for large positive z. Similarly,
>4

f(0) = f(—z) > éz and f(—=x) < f(0) — dz < 0 for large positive z.
oo 0
Remark: let g : R — (0, 00) be measurable and /g(x)d:r = /g(:c)d:z: = 00.
0 —o0

x

Let f be the indefinite integral of g defined by f(z) = /g(t)dt if x > 0 and
0
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0
f(z) = —/g(t)dt if x < 0. Then f(x) — o0 as ¢ — oo and f(z) — —oo as

x — —oo. Since f is continuous its range is all of R. Above result is a special
case of this with g replaced by f’ and f by f — f(0).

Problem 297

Let A C [0,1] have the following property: for any sequence {r,} C (0, c0)
there exist intervals Iy, I, ... such that A C I; UI;U... and m(I,,) < r, for each
n. Show that u(A) = 0 for every finite continuous positive measure p on the
Borel sigma field of [0,1] and use this to show that the Cantor set C' does not
have this property.

We first prove an elementary fact about continuous measures. [ Def. p is
continuous if p{z} = 0 for each z]. We claim that given € > 0 there exists
0 > 0 such that for any interval J of length less than § we have u(J) < e. For
each x € [0,1] there is an open interval I, centered at = such that u(I,) < e.
Let J, be the interval with center x and length one third the length of I,.. Let
{Js1s Jwgs ey Juy } cover [0,1]. Let 6 = min{m(J;,) : 1 < k < N}. Let J be
an interval whose length is less than §. There exists k such that J intersects
Jy,- Let a € JNJy,. Let y be any point of J. Then |y —a| < 0. If Jy,
has mid-point ¢ and length o then I, has center ¢ and length 3a. Now
ly—c| < d+|a—c|] <+ a < 2a by definition of §. Hence y € I,,. Thus
J C I, and p(J) < p(I,,) < e. This proves the claim. Now we choose positive
numbers d,,,n = 1,2, ... such that if J is an interval of length less than §,, then
p(J) < €/2™. By hypthesis there exist intervals I7, I, ... such that A C [;ULU...

and m(I,) < &, for each n. It follows that pu(A) < Ze/?” = €. Since € is

arbitrary p1(A) must be 0.

[Remark: a Borel set has ’strong measure 0’ if it has the property above.
Borel’s conjecture says that a set has strong measure 0 if and only if it is
countable].

The Cantor function yields a probability measure p such that p(C) = 1.
Hence Cantor set does not have strong measure 0.

Problem 298

Let A C R, {z,} C R and assume that A\U is at most countable for any
open set U containing {z,}. Show that A has strong measure 0. [ See Remark
in Problem 297 for the definition]

Let {r,} C (0,00). Let I, = (z, — Ton, Tp +12,) and U = UI”' U is open

n
and {z,} C U. Hence A\U is at most countable, say A\U C {y1,92,...}. Let
Jn = (Yn—"2n-1,Yn+72n—1). Consider the sequence of intervals Jy, I1, Jo, I, ....
The diameters of these are 2rq,2ry,2r3,2ry,... and AC L UJy UL, UJoU....
Remark: any countable set has the property above and any set with that
property is of strong measure 0. Any set with strong measure zero is a null set
w.r.t. any continuous measure.
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Problem 299

Show that there is a o— finite Borel measure p on R such that p((a,b)) = co
whenever ¢ < b and p << m.

o0

Let u(E) = / [Z ! (GEQZT")sz where {r,} is an enumeration of rational

E n=1
numbers and f(z) = |IL"71/2€_‘$| if z # 0,f(0) = 0. Since f € LY(R),

o0

Z % € L'(R) and hence the series Z % converges a.e.. Hence p is

n=1 n=1

a measure and it is absolutely continuous w.r.t. Lebesgue measure. p((a,b)) >
b b—r,

/[%]%x = o / f?(z)dz = oo if n is choesn such that 0 € (a—r,,b—7,,)

a a—"n

(i.e. ™y € (a,b)). Note that if dv = ¢dz where ¢ is a non-negative finite valued
measurable function then v is necessarily o— finite. [v((—N, N)N¢ 1[0, N)) <
oo for each NJ.

Problem 300 [ Order structure of positive finite mesaures|

Let A and pu be finite positive measures and v(A) = inf{/gd)\+/(IAfg)du :

0 < g < I4}. Show that v is a finite positive measure, v < A\,v < X and if 7 is
a finite positive measure with 7 < A\, 7 < p then 7 <w. [ie. v = min{\, u}].

We have v(A) < /IAd)\ + /(IA —Ia)dp = A(A) and v(A) < /(IA -

IA)d/\+/IAdu = u(A) for all A. If we show that v is finitely additive countable
additivity would follow from the fact that v << (A4 p). Alsoif 7 < A\, 7 < p
then /gd/\—l—/(IA—g)du > /Td)\+/(IA—g)dT = 7(A) whenever 0 < g < 14

so v(A) > 7(A) for all A. Thus it remains only to prove finite additivity of v.
We first note that if A and B are disjoint then {g: 0 < g < Taup} = {91+ 92:
0 < g1 < 14,0 < go < I} Hence, whenever 0 < g1 < 14,0 < go < Ip

we have v(AU B) < /(91 + g2)dX + /(IAuB — (g1 + g2))du = /g1d/\ +

/(IA —gl)d,u—l—/ggd)\—i—/(IB — g2)dp. Taking infimum over g; and go we get
V(AU B) < v(A) + v(B). On the other hand if 0 < g < I4up then g = g1 + g2
with 0 < gy < 14,0 < g < I 50 v(A) + »(B) < /gldA 4 /(IA — g)du +

Jair [t = g)in = [ @+ gar+ [ ave (o1 + g2)in
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= /gd)\ + /(IAUB — g)dp. Taking infimum over g we get v(A4) + v(B) <
v(AUB).

Problem 301
Given a sequence {\,} of finite positive measures on a sigma algebra show
that there is a largest measure v such that v < A, for all n.

BY Problem 300 we can define v, = min{A1, \a, ..., \p}. Clearly v(4) =
limv,,(A) exists for all A and v is a measure by Vitali-Hahn-Saks Theorem. [
See problem 614]

Remark: if A, < A for some finite positive measure A then we can apply this
result to {A — A, } to show that there is smallest v with A\, < v for all n. If A,
is the restiction of Lebesgue measure to (—n,n) then there is no finte positive
v such that \,, < v for all n.

Problem 302

Let C be a family of subsets of 2 which is closed under finite intersections
such that A € C implies A€ is a finite disjoint union of sets from C. Show that
the class of finite unions of sets from C coincides with the class of finite disjoint
unions of sets from C which coincides with the field generated by C. Hence show
that if C; and Cy are fields of subsets of €2 then the field generated by their union
is precisely the class of all finite (disjoint) unions of sets of the type AN B with
A€ (i and B € (Cs.

The second part follows easily from the first (with C = {ANB: A € C; and
B € Ca} since (ANB)¢ = (AN B°) U(A°N B)U (A°N B°). We now prove the
first part. Let A€ C and B € C. Then AUB =AU (BNA°) = AU(BNn{BU
By U ...U B,}}) where Bls are disjoint, are contained in A° and belong to C.
Thus AU B is the union of the disjoint sets A, BN By, ..., BN B,,. Assume that
union of any k sets in C is a disjoint union of sets from C for 1 < k < N. Let
Ay, Ag, ., Anq1 € C. Consider A UAsU...UAn1. By induction hypothesis we
can write AoUAsU...UAN1 as a disjoint union By UByU...U By, of sets from C.
Hence A{jUA5U... UAN+1 =A;UBiUByU...UB,, = A; U(Bl\Al) U (BQ\Al) U
U (Bn\A1). Each of the sets B;\4; = B; N A},1 < i < m is a finite disjoint
union of members of C. It follows that A; U (B1\A;)U(B2\A1)U...U(Bn\41)
is a finite disjoint union of members of C. The induction argument is now
complete. To show that the class of finite unions of sets from C coincides with
the field generated by C we only have to show that this class is closed under
complementation. [For then this class would be a field containing C]. Consider

N ()

(A1UA U UAN)® = ASNAsN...NAS = () | Bi,j with B;; € C for all i, ;.

i=1j=1
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N (i)
We can write ﬂ U B;; as U (B1,j, N B1,j,N...N By ;). This completes

1=1j=1 J1,J25e5JN
the proof.

Problem 303

Let T : LY(Q,F, P) — LY(Q,F, P) be linear and T'f > 0 whenever f > 0.
Show that T is continuous.

[ If not there exists {f,,} € L*(Q, F, P) such that || f,,|| = 1 and ||T'f,,| > 2".
Let f = g—ﬁ‘ Clearly f € L*(Q, F,P). Actually we can take fs to be

n=1
non-negative: T maps real functions to real functions and if ||T'f|| < C'|| f]| for
positive f then this holds for real f, hence complex f with a possibly larger

N N
constant C. In this case T'f > TZ 5—" > Z 1 = N for each N].
n=1 n=1

Remarks: note that under above hypothesis T is also a bounded opera-
tor on L. There is a converse: if T maps L'(Q,F, P) into itself bound-
edly and if it maps L (2, F, P) into itself boundedly then there is a map
S: LY Q,F,P) — LY(Q,F, P) with Sf > 0 whenever f > 0 and |[T"f| < S™|f|
for each positive integer n. [ Ref.: Lemma 4, page 672 of Dunford and Schwartz
"Linear Operators" Part I].

Problem 304

Let X be a compact metric space. If every pointwise convergent sequence in
C(X) converges uniformly show that X is a finite set.

There exists a sequence {x,} of distinct points converging to a point x.
For each n there exists &, € (0,1) such that z; ¢ B(zy,d,) for all j # n
and © ¢ B(xy,d,). [ If §,is small enough there is an open ball B(z,r) which is
disjoint from B(xy,, 0,) and this ball contains z; for all j sufficiently large. Hence
zj ¢ B(xy,d,) for all j sufficiently large. Now reduce §,, further to make sure
that no x;,j # n is in B(z,,d,)]. Let f,, : X — [0, 1] be a continuous function
which is 1 on B(zy,d,/2) and 0 on X\B(xy,,d,). Note that f,(z,) = 1. We
claim that f,,(y) — 0 as n — oo for every y. If y € B(x,,d,,) for infinitely many
n then y = limx,, =  and so y ¢ B(xp,d,) for any n, a contradiction! Thus
y ¢ B(xyn,d,) for n sufficiently large which implies f,(y) = 0 for n sufficiently
large. Hence f,, — 0 pointwise. If f,, — 0 uniformly then 1 = f,(z,) — 0 a
contradiction.

Problem 305
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Let X be a normed linear space and T',S be commuting bounded operators
on X. Show that T'S is invertible if and only if both 7" and S are invertible. |
Invertible operators are those which are bijective and have a bounded inverse].

If X is complete then one could use the fact that if T'S is bijective then
T and S are both bijective ( because T'S = ST') and boundedness of inverse
operators follows by open mapping theorem. The problem is, in fact, purely
algebraic! Let A be an algebra with a unit element e over R or C and z,y € A
with zy = yzr =(z,say). If  and y are invertible it is trivial to check that zy
is invertible. Suppose v = 27! exists. Then vy = yv as seen by multiplying
on both sides of the equation (zy)y = y(zy) by v. Now (vy)zr = vz = e and
x(yv) = zv = e proving that vy = yv is an inverse of . Similarly vz = zv is an
inverse of y.

Problem 306

[ Vey few connected subsets implies lots of clopen sets!]

Let X be a locally compact Hausdorff space. Suppose connected subsets of
X are all singleton sets. Show that there is a basis consisting of clopen sets.
[clopen means closed and open].

Let a € X and U be a neighbourhood of a. There exists an open set V' such

that a € V C % C U and Vis compact. We have to show that there is a clopen
set containing a and contained in V.

Fact 1: suppose C'is closed, C' C ‘77 beV and, for every x € C there exists
a clopen set W in V with z € W but b ¢ Ww.

Then there is a clopen set S of V such that b € X_/\S and C' C S.
To prove this fact let « € C and pick a clopen set W, with x € W, but

b ¢ W,. By compactness of v (which implies compactness of C) we have C' C
Wy UW,, U .UW,. for some {z1,x2,...,2,}. Take S =W, UW,,U..UW, .

Fact 2: let M = {z € VW clopen on Vandz e W imply @ € W}. Then
M is connected.
Assuming Fact 2 we complete the proof as follows: by hypothesis M must be

a singleton; since a € M it follows that M = {a}. Hence z € V.a # a implies
there exists a clopen set W containing x which does not contain a. We now

apply Fact 1 with C' = ‘;\V and b = a. It follows that there is a clopen set S
such that a € ‘7/\S and C C S C V. Now T = 17\5 is a clopen set in ViaeT
and T C Y_/\C C V. Since T is closed in V' it is closed in X. Since T is open

in V there is an open set Uy in X such that T =V NUy. Since T' C V we get
T =V NUy. Hence T is also open in X.

It remains to prove Fact 2. Suppose, if possible, M = AU B where A and B
are disjoint non-empty closed subsets of M. Without loss of generality assume
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that a € A. It is obvious from the definition of M that ‘_/\M is open in V and
hence M is closed in V. Thus M is closed in X and so are A and B. Since V
is normal there exist disjoint open sets Uy, Us in V with A C Uy, B C Us. We
claim that U; N B = 0. [ All closures are in X]. Just note that the closure of Uy
in ‘7 is same as (jl N {/ and that the closure of U; in 17 is contained in Us N 17
( because the latter is closed in V and contains Ui). Thus l'jl NV c Uusn %
and hence ljlﬁB = [jlﬂBl’H_/ C Ufﬂi_/ﬂB = () because B C Usy. Let
us denote U; by W so that W is open in 17, WNB = ) and A C W. Now
(W\W) NM =@ because (W\W) NA=g and (W\W) N B = @. Hence, any
point z of (VY/\W) nv belongs to a clopen set S, in V which does not contain
a. We now apply Fact 1 to the closed set (IX/\W) NV of V. [ This set is closed
in V because W is open in 17] Thus there exists a clopen set T in V such that
a € ‘_/\T and (VY/\W) NV C T. Now consider H = (WA\T) N V. This set is
open in V. Since (V_V\W) NV C T we have H = (IX/\T) NV. Hence H is
also closed in V. Note that a € H and H N B = (). Finally we note that 17/\H
is a clopen subset of V which does not contain a but contains all points of B.
Since B is non-empty there is a point v in B C M which has a clopen (in Y_/)
neighbourhood (viz. 1_/\H ) not containing a. This contradicts the definition of

M. The proof is now complete.

Problem 307

o0
Prove that there is an enumeration {q1, g2, ...} of QN (0, 1) such that Z Q1q2...qn =

n=1

Let b, = %7 and {a1, az, ...} is an enumeration of QN (0, 1)\{b1, b, ...}. We
take {q1,qa, ...} to be {a1,b1,b2, ... bpn,, a2, by +1, by 42, -y b2, A3, by 1, ... } fOr
ni+1
a suitable sequence {ny} of positive integers tending to co. Consider Z q192.--Gn =

n=1

a1+ a1by +a1bibe + ...+ a1bibe. by, = aqr[1+ % + % + ...+ —1=]. We can choose

ni+1
n1 such that this last expression exceeds 1. We can then choose ns such that
ng Njt1
Z q192---qn, > 2 and so on. In general we can make Z q192---Gn > J-
n=ni+1 n=n;+1

Problem 308
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Show that there is an enumeration {r,} of rationals such that R # U(rn —

n

Lo+ 1.

Enumerate non-square positive integers as an increasing sequence {m1, ma, ...}.
Let p,, be a rational number such that |p,, — 1| < % with p/ s distinct and enu-
merate Q\{py, po, ...} as {s1,s2,...}. Let r,2 = s, and {r, : n non-square} be
an the sequence py, py, ... Clearly, {r,,} is an enumeration of all rationals. Con-
sider (r,, — %, Trn+ %) where n is non-square. By definition r,, = P, for some k,,
and k, > n. If |z —r,| < 1/n then [z — 1| < 2 + m%m < 2 < 2. Tt follows that

the interval (r,, — %, T + %) is contained in [—1, 3] whenever n is not a square.

When n = m? this interval is (s, — #7 Sm + ﬁ) and Lebesgue measure of the

union of all these intervals does not exceed Z % It follows that the measure
m

of U(rn — L. ry + 1) is finite.

Problem 309
Let (X,d) be a separable metric space and f a real valued function on X.
Show that the set of points z such that lim f(y) exists and is different from f(x)
Yy—x

is at most countable.

We may suppose that lim f(y) exists for every x € X. Let A = {z €

y—x
X : f(z) < lim f(y)}. Then A = U Apq where A, = {z € X : f(z) <

y*h'l/’
p,q€Q
p<q

p < g <lim f(y)}. If we show that A, , is atmost countable it would follow
Yy—x

that A is at most countable. Changing f to —f we can conclude that {z €
X : f(x) >lim f(y)} is at most countable. Thus, outside a countable set we
y—

have lim f(y) < f(x) < lim f(y) which means lim f(y) = f(x). Now fix p,q
Yy—x Yy—x Yy—x

and let z € A, ,. If every ball B(z,r) contains a point y of A, , then there
exist points y,, in B(z, %) NA,qn=12.. Butthen f(y,) < p for all n so
lim f(y) < p < ¢ a contradiction. Thus no point of A4, , is a limit point of
y—x

A, , and this implies every sigleton set in A, 4 is open in the subspace topology.
Since A, 4 is separable it must be at most countable.

Problem 310

a) Let f: R — R satisfy the equations f(x +y) = f(x) + f(y) and f(zy) =
f(x)f(y) for all z,y € R. Show that either f(z) = z for all x or f(z) = 0 for
all .

b) Let g : C — C satisfy the equations g(z1 + 22) = ¢g(z1) + g(z2) and
g(z122) = g(#1)g(22) for all z1, z9 € C. If g is also continuous show that g(z) =0
for all z or g(2) = z for all z or g(z) = z for all 2.

¢) Determine all multiplicative measurable maps f: R — R.
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[See also Problem 311 below].

Since f(rx) = rf(z) and f(rz) = f(r)f(z) for r rational we get f(r) = r
for r rational. Let a < b and ¢ = vVb—a. Then f(b) — f(a) = f(b—a) =
f(c®) = [f(e)]> > 0 so f is increasing. If 7,,s,(n = 1,2,...) are rationals
with r, T = and s, | « then r, = f(r,) < f(z) < f(sn) = s, for all n so
x < f(x) < x. This proves a). Now g(rz) = rg(z) and g(rz) = g(r)g(z) for
r rational so g(r) = r for all rational r unless g = 0. By continuity g(z) = «
for all real z. Now —1 = g(—1) = [g(i)]? so g(i) = +i. If g(i) = i then
g(a+1ib) = g(a)+g(i)g(b) = a+1b for all a,b € R. On the other hand ¢(i) = —i
gives g(a + ib) = g(a) + g(¢)g(b) = a — ib for all a,b € R. This finishes b).
Now let f : R — R be multiplicative. We first observe that f2(0) = f(0)
and f2(1) = f(1) so f(0) and f(1) both belong to {0,1}. If f(1) = 0 then
f(x) = f(x)f(1) = 0 for all z. Now let f(1) = 0. If f(z) = 0 for some
x # 0 then f(y) = f(z)f(%) = 0 for all y so assume f(x) # 0 if x # 0. Let
g(x) = log|f(e”)|. Then g is additive and measurable so g(x) = cz for some
constant ¢. Thus |f(e®)] = e and |f(y)| = y° for all y > 0. If z € R then
F(=¢) = F(=1)f(e%) 0 [f(~e%)] = |F(=1)] e which gives |f(~y)| = dy° if
y > 0. Since |f(1)] = |f(=1)||f(—=1)|] we get 1¢ = d1°d1¢ so d*> = 1. Obviously
d is positive so d = 1. Thus |f(y)| = |y|  for all y € R. [ |£(0)| = |f(0)||f(2)] =
|£(0)]2¢ so f(0) = 0]. Note that f(2?) = [f(z)]?> > 0 for x # 0 ( because
f(z) #0if ¢ # 0]. Thus f(y) > 0 for y > 0. If f(—1) > 0 then f(y) > 0 for
all y < 0 and we get f(y) = |y°| for every real number y. Otherwise, f(—1) < 0
because f(z) # 0 if z # 0 and we get f(—y) = f(—1)f(y) < 0 for all y > 0.
In this case we get f(y) = |y|° or — |y| according as y > 0 or < 0. The two
functions we have arrived at are indeed multiplicative measurable maps.

Remark: if y — |y|° is additive then 2¢ = 1¢ + 1° so ¢ = 1 which is a
contradiction since y — |y| is not additive. If y — |y|“ sgn(y) is additive then
¢ = 1 again so the only additive and multiplicative map is the identity map.
Thus ¢) contains a).

Problem 311

Find all continuous maps f : R — S! such that f(z +y) = f(z)f(y) for all
x,y. Do the same when S! is replaced by C.

First part: note that f(0) = 1. Fix a positive integer N. By a standard
argument in Complex Analysis there exists a unique continuous function hy :
[N, N] — R such that f(z) = e"¥® (|z| < N) and hy(0) = 1. Tt follows
easily that h'ys define a continuous function h : R — R such that h(0) = 0
and f(z) = e’*®) for all real numbers z. Note that e/l*(e+t)=h(@)=h(®)] — ] 4o
h(a+b) — h(a) — h(b) = 2nr for some integer n. By continuity of A we conclude
that n does not depend on a and b. Since h(0) = 0 we conlude that h is additive.

Since h is additive and continuous there is a real number a such that h(z) =
ax for all x. Hence f(x) = ¢**®. Now consider the second part. Since f(0) =
f2(0) either f(0) = 0 or f(0) = 1. If f(x) = 0 for some = then f(z +y) =
f(z)f(y) = 0 for all y which gives f = 0. If this is not the case then f(0) =1

and f never vanishes. Let g(z) = I}ngl The first part can be applied to g and
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we get f(

x) = €' | f(z)|. Also log|f(x)| is an additive continuous function on
R, so [f(z)| =

b" for some real number b. We now have f(z) = e(b+i®)z,
Problem 312

Find a sequence of continuous functions {f,} from R into R such that the
sequence converges pointwise to 0 on R but it does not converge uniformly on
any (non-degenerate) interval.

Let {r,} be an enumeration of rationals, ¢,,(z) =nz for 0 <z < 1 ¢, (z) =
n(2 —z) for 1 < 2 < 2 and ¢,(z) = 0 everywhere else. Let fulz) =

Z w The fact that ¢,(z) — 0 as n — oo for every real number

j=1

implies that {f,} — 0 pointwise. Now let a < b. Pick a rational r; in (a,b).

1) > $n(3) _ 14
= 23 - j -

n 27

If n is sufficiently large then r; + = € (a,b) and f,(r; +
follows that {f,} does not converge uniformly on (a,b).

Problem 313
Let f € C[0,1]. Suppose z1 < x2 < ... < x, and y1,¥Ys2, ..., yn € R with no

x; belonging to [0,1]. Given e > 0 show that there is a polynomial p such that
sup{|f(2) - p(x)| : 0 <& <1} < eand f(z;) =yl <i<n.

There is a polynomial ¢ such that ¢(x;) = —y; for 1 < i < n. [ For
example we can take ¢(x ZcZ H ;) where ¢; = —=—="%—— pro-
i=1  j#i H(mi_zj)
J#i
vided n # 1. For n = 1 we can take ¢(z) = —y1 + (x — z1)]. Now con-
sider £+ Thig function is continuous on [0,1] and hence there is a

[e—=n

j=1

polynomial py such that La)+é(z) —po(z)] < dfor 0 <z <1 where § > 0

[e—=n

j=1
n

is chosen such that 6sup{H[1 +z;] : 0 <z <1} < e It follows that
j=1

Hx—z]po <5sup{H:c—zJ O§z§1}§§sup{H[l+

J=1 = J=1
lzjl: 0 <2 <1} <
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n

Now take p(z) = H(ﬂc —zj)po(x) — o(z).

j=1
Problem 314

Let A be a bounded Borel set set of positive measure . Find all real numbers
z such that x + A almost contains A in the sense m(A\(x + A4)) = 0.

Let A C [a,b]. If m(A\(z+A4)) = 0and m(A\(y+A)) = 0 then m(A\(z+y+
A)) = 0. Hence m(A\(nz+ A)) = 0 has this property for all n € N. If > 0 and
nx > b—a then AN(nx+A) C [a,b]N(b,0) = 0 so m(A\(nx+A)) = m(A) > 0.
This shows that z < 0. Similarly > 0. Thus z must be 0.

Remark: if 0 < m(A) < oo then {z : m(A\(z + A)) = 0} is a subgroup of
(R, +).

The next three problems are from Berkely Problem Book.
Problem 315

Let f :]0,00) — [0,00) be monotonically increasing. Suppose f(a) > a and
f(b) < b for some a < b. Show that f has a fixed point.

Replacing f by f(z 4+ a) — a and b by b — a we can reduce the proof to the
case ¢ = 0. Thus f(0) > 0 and f(b) < b. We may redefine f to be the constant
f(b) on (b,00). In this case f(z) < « for all z > b. Let A = {z : f(x) > z}.
Note that 0 € A and A C [0,b). Let & = sup A. Note that a > 0. If € > 0 we
can find x € A such that x < o < z 4+ e. We have a — f(a) < a— f(z) ( by
monotonicity) so o — f(a) < a — f(z) < z + € — f(z). Since z € A this gives
a — f(a) < e. Since € is arbitratry we get a < f(«). To complete the proof we
have to show that equality holds here. Suppose o < f(a) . Let § = f(a) — a.
There exists y € A withy < a < y+3d. Wethenget y < a <y+d = f(a)—a+y
and hence f(a) —a+y < f(a) < f(f(o) — a+ y) again by monotonicity. We
have proved that z < f(z) where z = f(a) —a+y. Since f(t) <t for all t > b
we must have z < b. Since @ = sup A and z € A by definition of A we get z < «
which says f(a) —a+y < aor d +y < «. This is a contradiction.

Problem 316

Let f, f1, f2,... : R — R. Suppose f,(z,) — f(z) whenever z,, — x. Show
that f is continuous.

Remark: f/ s need not be continuous; the proof below works if R is replaced
by any metric space.

If not we have z,, — = and |f(x,) — f(z)] > § > 0 for all n. We have

fm(xn) = f(xn) asm — oo and so there exists m,, such that | fp,, () — f(zn)| <
4/2. We may suppose m; < mg < ... Also fi (z,) — f(x). [ Indeed
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yr — y implies f, (y;) — f(y) for n; T oo as seen by considering a se-
quence of the type y1,y1, .., ¥1, Y2, Y2, -, Y2, -] Now & < |f(zn) — f(x)] <

| fnn (@0) = f(@n) |+ fin, (@0) — f(@)] < 8/2+[fm, (xn) — f(x)]. Lettingn — oo
we get 6 < §/2, a contradiction.

Problem 317

x40
Let f :[0,1] — R be a continuous function such that f(z) < 5 / f@)dt or
z—94

all 6 > 0. Show that f is convex.
Let a < band g(z) = f(z) — [(x —a) f(b) + (b—x) f(a)]/(b— a). Easy to see
z+0

that g is continuous and g(z) < 55 /g(t)dt or all 6 > 0. Clearly if g attains its

z—4
maximum at a point « € (a, b) then g is a constant. Thus g attains its maximum
at one of the end points. Since g(a) = g(b) = 0 we get g(z) < 0 for all  which
means f(z) < [(x—a)f(b)+(b—z)f(a)]/(b—a) we have proved that f is convex.

Problem 318

b
Let f € L'(a,b) where 0 < a < b < 27. If /f(x)em”’dx =0foralln >0
show that f =0 a.e.. ‘

This is an easy consequence of some basic theorems in H? spaces. Extend
f to [0,27] by making it 0 outside (a,b). f is the boundary function of an H!
function on the unit disc and it vanishes on a set of positive measure ( because
b — a < 27). This implies that f = 0 almost everywhere.

Remark: if y is a complex Borel measure on (a, b) with / em*dp(z) = 0 for

(a,b)
all n > 0 then p = 0. This follows from the fact that p is absolutely continuous
(by F and M Riesz Theorem).

Problem 319
Let X be a normed linear space, M as subpace of finite co-dimension. If M
is complete so is X.

There exist y1,ys,..,yn such that any point of X is uniquely expressible
N

as m + Zciyi with m € M and ¢}s belonging to the scalar field. Let {m,, +
i=1
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N N
Z ¢inyi} be a Cauchy sequence in X. Let a,, = Z |cin|. If {a,} is unbounded

i=1 i=1
N
then { i(mn + Zcmyz)} — 0 through a subsequence and there is a further
i=1
subsequence along which ai (C1,m, C2,my -y CN,n) CONVErges to a unit vector in RV,
N
This leads to an equation of the type m + Z ¢iy; = 0 where (c1, ¢, ...,cn) is a
i=1
unit vector. This is a contradiction, so {a, } is bounded. It follows that {m,,} is
N

Cauchy along a subsequence ( because {Z ¢inyi} is convergent, hence Cauchy,
i=1
along a subsequence). If (along a subsequence) m,, — m € M then it follows
N

that {m, + Zci’nyi} converes along a subsequence, hence along the whole

i=1
sequence.

Problem 320
Let € > 0. There exists a positive integer N such that ¢ € S* and ¢, c?, .., eV
have real parts strictly positive imply |c — 1| < e.

Suppose this is false for some € > 0. Then there exists a sequence {c,} in
St such that c,,c2,..,c? have real parts strictly positive but |c, — 1| > e. If
c is a limit point of this sequence then Reck > 0 for every positive integer k
and |c— 1] > e. If ¢ is not a root of unity then {c,c?,...} is dense in S! and
hence Rec® — Re(—1) = —1 for some k; T co which is a contradiction. Hence
there is a least N > 2 such that ¢ = 1. The numbers ¢, c?, ...,c" are distinct
and they are all N — th roots of 1. Hence every N — th root of 1 has positive

- . i N//2 . .
real part. This is a contradiction because Ree?™ =~ < 0 if N is even and Re

2 SR < 0 N s odd. [ Note that # — /N € (7/2,7)].

Problem 321

Let X be a topological vector space over R and v : X — S! be a continuous
map such that y(x + y) = y(z)y(y) for all z,y. Show that there exists 2* € X*
such that y(z) = e ) for all z.

Remark: X* can be {0}; in this case the group (X,+) has no continuous
character other than 1. [ Let X be the space of all bounded Borel measurable

functions on [0,1] with the metric d(f,g) = /1J‘rf\;ilgl' Then X is a topo-

logical vector space. (f, — 0 in X iff / — 0 in measure, w.r.t. Lebesgue
measure). We claim that X* = {0}. Let ® € X* and ¢ > 0. There exists

r > 0 such that / UL < r implies |®(f)| < e. Let f € X be arbitrary and

T+ f]
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_ foNT ) ; N Ifil e |£2Y N
fi=[2 I(;Tl’ﬁ)7lglg2 . Then/lﬂfi| —/_1 T4 7T2N < 7:_11<r

2N 2N
2N
whenever 5% < 7. Hence |®(f;)| < € for each i. Since Q%th = f we get
i=1

|®(f)] < max{|®(f;)|: 1 <i <2V} <e Since € is arbitrary we get ® = 0].

There is open set U containing 0 such that U is balanced (i.e. tr € U
whenever x € U and |t|] < 1) and |y(z) — 1] < 1 for all x € U. Note that
y(z) # —1if x € U. Let f: U — R be defined by vy(z) = /@ and —7 <
f(z) < m. f(z) is nothing but the principle logarithm of v(z). If z € X
there exists ¢ > 0 such that tx € U. Let f(z) = tf(3x) Vo € X. To see
that this is well-defined suppose we also have %1: € U where s > 0. Consider
{az : a € R}. This subgroup is homeomorphic to (R, +). The restriction of 7 to
this subgroup is a determined by a character of (R, +) and hence y(az) = €**® for
some real number c. Now 7(%56) = ¢/(i7) and so e/t = '/ (47) Tt follows that
if(Yx) = ic/t+2nmi for some integer n. If n # 0 then |ic/t| = |if ($2) — 2nmi| >
2[n|m — 7 > so Z(1x) € U ( because U is balanced). Hence |y(Zz) — 1| < 1
which means [e'™ — 1| < 1 which is a contradiction. Hence if(1z) = ic/t.
Similarly if(1z) = ic/s. It follows that ¢f(32) = sf(1z) = c. We have proved
that f is well-defined on X. If x € U then we can take ¢t = 1 in the definition,
so f defined on X is indeed an extension of f on U. Note that the principle
logarithm is continuous on S'\{—1} so f is continuous on U. If we show that
f is linear we can conclude that it is continuous on X (because it is continuos
at 0). Suppose z # 0 and a € R\{0}. There exists ¢ > 0 such that 1z € U.
Since ﬁ(am) e U we get f(ax) =t]|a] f(ﬁ(ax)) and f(x) = tf(%a:) Ifa>0
this gives f(az) = af(z). Noting that v(—z) = [y(z)]” for z € U we see
that /(=2 = ¢=f(®) and if(—x) = 2mim — if(x) for some inreger m. Since
[f(=2)+ f(x)] < 2m we get m = 0. It follows that f(—z) = —f(z) (for all
x € U). From this it follows easily that the equation holds for all 2 € X. Hence
f(az) = af(x) whenever a and x are non-zero. Since f(—0) = —f(0) we get
f(0) =0and so f(ax) = af(zx) for all a € R for all z € X. Finally we prove that
[ is additive: let V' be a symmetric neighbourhood of 0 such that |f(z)| < § for
z€VandV+V CU. Forz,y € V wehave z+y € U so y(z+y) = ¢/ +¥) and
Y(2)y(y) = e/ @ef W), Hence f(z+y)— f(z)— f(y) = 2n7 for some integer n.
However |f(z +y) — f(z) — f(y)] < mson = 0. Hence f(z+y) = f(z)+f(y) for
allz,y € V. If x,y € X are arbitrary choose ¢t > 0 such that %x eV, %y € V and

(@ ty) € V. We get f(z+y) = tf(3(z+y)) = tf(70) +1f(7y) = f(2) + f().
Problem 322
Let X be a locally compact Hausdorff space, Y a Hausdorff space and f :

X — Y a continuous open surjective map. If K is compact in Y there exists C
compact in X such that f(C) = K.
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For each x € f~1(K) there exists an open set U, such that U_ is compact
and x € U,. K is covered by the open sets f(U,),z € f~1(K). Let {f(Us,) :

1 <i < n} be a finite subcover. Take C = f~}(K) N UE1 N Ugc2 N...N an
Problem 323 [ Manjunath Krishnapur]

Suppose {F,,} is an increasing sequence of sigma algebras on  and {G,} is
an decreasing sequence of sigma algebras on 2 such that ﬂgn is trivial with

respect to a given probability measure P on a sigma algebra F which contains
each F,,. [ A sigma algebra is trivial w.r.t. a probability measure P if every set
in it has probability 0 or 1]. Let X be a random variable on (Q, F, P) which
is measurable w.r.t. o{F,,G,} ( the sigma algebra generated by F,, UG,,) for
each n. Does it follow that X is measurable w.r.t. the completion of the sigma
algebra generated by all the F),s?

No! Let {Y,,} beii.d. non-constant random variables, F,, = 0{Y2,Ys,..., Y, },G, =

o{Sn,Sn+1,...} where S,, = Y1 + Yo+ ... +Y,. Let X = Y;. Since X =
Sp —{Ya+ Y5+ ... +Y,} it follows that X is measurable w.r.t. o{F,,G,} for
each n. By Kolomogorov’s 0 — 1 Law ﬂgn is trivial. However sigma algebra

n
generated by all the F/ s is 0{Y3,Y3, ...} and X is independent of this and hence
not measurable w.r.t. this sigma field (or its completion) since it is assumed to
be non-constant.

Remark: there is a corresponding question about closed subspaces of a
Hllbert space: suppose {M,} is an increasing sequence of closed subspaces of
a Hilbert space H and {N,} a decreasing sequence of closed subspaces of H

o0

with ﬂ N,, = {0}. Suppose z € M, + N, for each n. Does it follow that

n=1

x belongs to the closed subspace M generated by U M,? The answer again

n=1
is no: let {e,} be an orthonormal basis for H, M,, = [span{es,es,....,e,}]”
and N,, = [span{s,, Sn+1,-..}]” where s,, = e; + ex+ ... + e,. Then e; €

M, + N, for each n Since e; is orthogonal to each Mn 1t does not belong to

M. Suppose y € ﬂ N,,. Notice that N, = {as, + Z aje; : a € C,a;C for
n=1 Jj=n+1

all j and Z |aj|2 < oo}. (If H is a real Hilbert space we can replace C by R).
Jj=n+1
Note also that z € N, =< z,e1 >=< z,e9 >= ... =< z,e, >. It follows that
< y,e; > is independent of j and hence y = 0.
Problem 324
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An infinitely divisible characteristic function (i.d.c.f) may be the product of
two characteristic functions not both of which are infinitely divisible.
Next problem gives a stronger result.
Z an (e —1)

Claim: if a,, > 0 and Zan < 00 then e » is an i.d.c.f. In-

n

an(e™*—1) /( R )
deed e =e where v = Zandn (which v is a Levy

mesure). Now let X take the values 0 and 1 with probabilities 2/3 and 1/3
so that its characteristic function is given by ¢(t) = 2+36”. Let Log denote
the principle branch of logarithm on {Rez > 0}. Then Log(%t*) is analytic
in {|z| < 2} (because Re(%:2) > 0 there) so we have a power series expan-

sion Log( 2“ anz We can compute the coefficients by taking z in

)t t/2

(0,1). Since log(2$* ) log 2 + log(1 4 t/2) = log % + Z we get

int int
e > zb e

bn o for n > 1. Now ¢(t) = elo9(¢(®) = ¢ =en
[ Note that Zb = Log(31) = 0. If a, = b} and ¢, = a, it follows

Zan(e“lt—l) ch(eim_l)

that e » and e n» are inifinitely divisible (by the claim) and
3 eateio) S et
en o(t)y=¢€ which exhibits an inifinitely divisible charac-

teristic function as the product of two characteristic functions one of which, viz.
¢, is not inifinitely divisible because no non-constant bounded random variable
is inifinitely divisible.

Problem 325

Product of two characteristic functions, neither of which is inifinitely divisi-
ble can be inifinitely divisible.

Let X take values —1,0, 1,2, ... with probabilities 1/6,(5/12), (5/12)(1/2), (5/12)(1/22), ....

'Lnt

Let ¢(t) = Ee™X. Then ¢(t) = e~ /6+(5/12)
n=0

= e " J6+(5/12) ;g myem =
a —Z(cos(nt)—l)

%2;_e€t . We would like to express ¢(t) in the form e n»=0 . For this

consider the function 2 + z in 3 < |z| < 2. Since Re(2 4+ z) > 0 in this

region Log(2 + z) is well defined. [ Log stands for the principle branch of

logarithm; note that Log = log on (0,00)]. We have a Laurent expansion

Log(2 + 2) = Z anz™ for 3 < |z| < 2. The coefficients a, can be deter-

n=-—oo
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mined from log(2 + t) Z ant™ for 1 <t < 2. We have log(2+1t) =log2 +

n=-—oo

Z L(Lyn(—=1)"*1. Hence a, = 0forn < 0,a0 =log2,a, = L ()" (-1)"",n =

n=1
oo o >

g ane—int _ § aneint(71)7z g bneint

—it
1,2,.... Now ¢(t) = ;)22-5-(;6” = 1en=0 e n=0 = ien=-w

where b, = 1(3)" for n = 1,2,..,00 = 0 and b_, = 2(3)"(-1)""',n =

oo

2 Z by, cos(nt) 0o

1,2,.... Now |o(t)]* = fe n=—ce . Since Z b, = log3 we may write
2 Z by (cos(nt)—1) 2 Z by (cos(nt)—1) —/(l—costx)du(x)
()] = == =e "/ =e where
Z (bp, + b_p)dp. Clearly, Z |bn| < o0 so v is a finite mesure, hence a
= n 1

Levy measure. It follows that |¢|” is an inifinitely divisible characteristic func-
tion. ¢ itself is not an inifinitely divisible characteristic function. Indeed if U
and V are i.i.d. and U + V has the distribution has the same distribution as
X then U and V are discrete random variable. If P{U = n} > 0 for some
n < 0 then P{U +V = 2n} > P{U = n}P{V = n} = P>{U = n} > 0 but
P{X =j} =0 for j < —1. It follows that U and V are non-negative random
variable which implies that X is non-negative, a contradiction.

Problem 326

Prove that there is a bounded set £ in R of measure 0 such that £ + E is
not measurable.

Let {a;};c; be a maximal linearly independent subset of the Cantor set C
over the field Q. Since C' + C = [0, 2] the set {a;}ier is also a Hamel basis for
R over Q. Let By = A+ A where A ={ra; :i € I,r € Q,0 <r <1}. Clearly
A has measure 0. Since E; + F; has no interior because every point in it is
a linear combination of four elements of {a;};c; . ( If every point of (a,b) is
a linear combination of four elements of {a;};cr then, for any real number x
there exists n such that “TH’ + £ € (a,b) which show that 2 can be written as a
linear combination of 8 elements of {a;}. However a sum of 9 elements of {a;}
cannot be expressed in this form]. Hence E; has measure 0 if it is measurable.
If it is not measurable we can take E = A. If F; is measurable we define {E,,}
by E,i1 = E, + E,,n > 1. If the process does not stop ( in the sense we

o0

get infintely many measurable sets {E, }) then [0,1] C U E,, a contradiction
n=1
since some F,, must have positive measure, but F,, + F,, does not contain any

interval.
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Problem 327

If f:R — R is measurable, g(z) = sup{|f(z +y) — f(2)| : y € R}, h(x) =
sup{|f(z +y) — f(z — y)| : y € R} then g is measurable, but i need not be.

Proof: sup{|f(z +y) — f(#)| : y € R} = max{sup{f(z +y) — f(z) : y €
R}, —inf{f(z +y) — f(z) : y € R}}

— max{sup{ f(z +y) : y € R} — f(z),—inf{f(z +9) : y € R} + [(2)} =
max{a — f(x), f(x) — b} where a = sup{f(y) : y € R} and b= —inf{f(y) : y €
R}. [If a = 00 or b= oo then g = o0]. Hence g is measurable.

Let E be a subset of [0,1] of measure 0 such that E + FE is not measurable.
Let f(z) = Ig — Ig42. Then h = Iy where F = 1(E + E) + 1. Hence h is not
measurable.

Problem 328

Given a measurable function f : [0,1] — R there is a continuous function g
on [0,1] such that ¢’ = f a.e.

This is a theorem of Lusin.

Lemmal

Let f € L'([0,1]) and € > 0. There exists g € C[0,1] such that ¢’ = f a.e.,
g(a) =0 = g(b) and |g(z)| < € Va.

Proof of Lemma 1: let h(z) = /f(t)dt. There is a partition {0 = ag, a1, a2, ..., a, =
0

1} of [0,1] such that the oscillation of & on [a;, a;+1] does not exceed ¢ for any
i. There is continous monotonic function ¢, on [a;, a;+1] such that ¢,(a;) =
h(a;), ¢;(air1) = h(a;41) and b’ = 0 a.e. [ ¢, non-decreasing or non-increasing
according as h(a;+1) > h(a;) or h(a;1+1) < h(a;). This follows by applying affine
maps to a Cantor function]. Define ¢ : [0,1] — R by ¢ = ¢, on [a;, a;41],0 < i <
n}. Let g = h — ¢. Then g is continuous, ¢’ = h' = f a.e., g(a) = 0 = g(b) [be-
cause ¢(ao) = h(ao), p(an) = h(an)] and |g(x)[ = [h(z) — ¢(z)] = [h(x) — ¢;(2)]
on [a;, aiy1] and h(z) — ¢;(x) < h(z) — ¢;(a;i)

= hlw) — hla) < €,6,(z) — h(z) < 6,(ai1) — h(x) = hlaisr) — h(z) < € (if
¢, is increasing; a similar argument works if it is decreasing).

Lemma 2

Let f € L'([0,1]),e > 0 and C be a closed subset of [0,1]. Then there
exists g € C[0,1] such that ¢’ = f a.e. on [0,1\C,g = ¢’ = 0 on C and
|g(x + h)| < €|h| whenever z € C and = + h € [0, 1].

Let [0,1]\C be the disjoint union of open intervals (an,by,) and choose
{an,m} C (an,by) such that anm, | a, as m | —oo and aym 1 by, as m T oo.

e(an,m_an) E(bn_an,m)
n+lm[ > n+[m]|

Let €, m = min{ }. By Lemma 1 there exists a continuous
function g on U(an,bn) such that g(a,) = ¢(by,) = 0 for all n,|g| < €pm on

(@n,m» Gn,m+1) and ¢' = f a.e. on U(an,bn). Define g to be 0 on C. Claim:
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g = 0on C. Suppose z € C and z < a, < b,. Then, for any m and any

Y € (Anm, Gn,m+1) We have ‘g(y;:g(‘”)‘ < _Eam < _c It follows from this

= an,m—an — n+|ml’
that ¢’(z+) = 0. Similarly ¢’(z—) = 0. Hence g = ¢’ = 0 on C. It remains to
see that |g(xz + h)| < €|h| whenever z € C and z + h € [0,1]. If h > 0 we just

—g(z) €nm €
S S TL+|7TI,‘ < €. A

(
—T An,m—0n

have to take y = = + h in the inequality ‘g(y;

similar argument holds for h < 0.

Proof of Lusin’s theorem: we construct closed sets C,, and continuous func-
tions g, (n > 0) such that the following hold:

1) each g, is a.e. differentiable and h!, = f(z) V& € D,, where D,, =
CouCiU...UCyand h, =go+g1+ ...+ 9gn

2) gn=0o0n D,

3) |gn(x + h)| < % ifx € D,_1and z+ h €10,1]

4) m(Dg) < + forn > 1.

o0
Once this is done we show that h = lim h,, = Z gn satisfies b’ = f a.e.

We begin the construction of C,, and g, by nta(l)iing go to be 0 and Cj to
be ). Suppose we have constructed C,, and g, for 0 < n < N. Let Ey be a
measurable subset of D%, such that m(DS\En) < ﬁ and such that f and
hy are bounded on Ey. [ Clearly such a set exists: intersect D§, with |f| < R
and |hy| < R for a sufficiently large R]. By Lemma 2 there exists gn4+1 such
that

a) 9§v+1 = f—hly ae.

b) gny1 = gy =0on Dy

¢) lgnt1(z+h)| < QJV}LL ifx € Dy and z + h € [0,1]

Now we choose a closed set Cni1 C En such that m(DG\Cny1) <
and such that gy, = f — Ay on Cn 1.

The construction is over. Let C' = UC" so that m(C) = 1. [ m(C*) <

1
N+1

m(D%,1) = m(DG\Cny1) < ﬁ for all N]. We claim that h'(z) = f(z) if
x € C. Fix z. Note that there exists N such that x € D,, for allm > N. We have

h(w-&-ti—h(z) _ hN(z+t1—hN(x) + Z 9]'($+t1*gj($) and h(l+t1—h($) — f(z)| <

j=N+1

7’”\’(“:“27’1“@ - f(x)‘ + Z g%‘ Since Wy (z) — f(z) = gly1(z) = 0 we are
J=N+1
done.

Problem 329

There exists a continuous function g on [0, 1] such that ¢’ exists a.e., ¢’(x) > 1
a.e. but g is not increasing on any interval.

o o0
Let Q = {’r‘n} and f = Z(n+1)2l(7'n_%77'n+‘1§). Since Zm((r”L_n%”r"—i_

n

j=1 j=1
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213)) < oo we have m(limsup(r,, — 5,7, + -5)) = 0. Hence f is finite valued

a.e. Clearly f is measurable. Hence, by Problem 328 above there exists a
continuous function g such that ¢’ = f a.e.. If g is increasing on [a,b] ( for
b b

some a,b with a < b) then /g’(m)dx < g(b) — g(a) so /f(x)d:c < 00. Hence

a

Z n+ 1)2 — 5, + 72) N (a,b)) < co. In particular (n+ 1)*m((r, —
j=1

4. rn+72)N(a,b)) — 0 asn — co. In turn, this implies (7, — 5,7, + -3 ) is not
contalned in (a,b) for n sufficiently large. Let 6 = 25%. If r,, € (22—, 242 46)

then (r, — 25,7, + ) C (42 — —#,‘ib—i—(s-&- o)
C (a,b) provided & < 252 It follows that r, ¢ (242 — 4, %E2 + ) for n

sufficlently large, which is absurd.

Problem 330
Let f:[0,1] — R be integrable and ¢ : [0,1] — [0,1] is continuously differ-
entiable. Is f(g(t))g'(t) necessarily integrable?

No. Let g( ) - Cn( t— m)Q on [nipxn} g(t) - Cn(t - %)2 on [-’L‘na%]n =

1,2, ... where z,, is the mid-point of [n—ﬂ, 11'and ¢, = 4(n + 1)% and g(0) =
1

0. It is easy to see that g is continuously differentiable, g(z,) = -z and g

is increasing on [%—H’x"} Let f(x) = 2~ '/2 for x # 0,f(0) = 0. Then
Tn Tn
[ tengoia = [ |Ze]a = 2/mle, - ) = A - 2
1/(n+1) 1/(n+1)

1
Hence / Fla()g' ()] dt >3 2 = o
0 n

Problem 331 [ Smital’s Lemma]
If A is a set of positive measure in R then (A 4+ Q)¢ has measure 0.

[Q may be replaced by any countable dense set]
Fix a point a such that w — 1 as 6 — 0. [ By Lebesgue’s
Theorem almost all points of A have this property]. Let 0 < a < 1. Choose
0 > 0 such that m((a—r,a+7)NA) > 2ar whenever 0 < r < 4. Let D = a+Q.
If x € D then = a + d for some d € Q. Consider m((x —r,z +7)N (A + d)).
Since (a —r,a+7) C (x —r,x + 1) —d we have m((z —r,z +r)N (A +d)) >
m{{(a—r,a+r)+d}N(A+d)) = m((a—r,a+r)NA) > 2ar. Now m((z—r,x+r)N
(A+Q)) > m((z—r,z+r)N(A+d)) > 2ar. Fix a positive integer N. Consider
the collection of all intervals of the type (x —r,z+7) withz € Dand 0 <r < ¢
which are contained in (—N, N). Since D is dense this family is a Vitali cover
for (—N, N). Hence there is a disjoint sequence of intervals (x,, — 7y, n + 75)
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contained in (—N, N) such that m((—N, N)\ U(wn — Tp, Ty + 7)) = 0 and

m((n — Tn,Tn + 1) N (A 4+ Q)) > 2ar, for each n. [ Kannan and Kruger
Advanced Analysis on the Real Line, p.10 OR Diestel and Spalsbury, The Joys
of Haar Measure, p. 13]. Now m((A+ Q)N (=N, N)) = Z m((A+ Q)N (z, —

Ty Tn + Tn)) > 22047% = am((—N,N)). Since a < 1 is arbitrary we get

m((A+ Q)N (=N,N)) = m((—N,N)). Thus m((A+ Q)N (—=N,N)) =0 for
every N and the proof is complete.

Problem 332

If K; and K5 are compact subsets of R (and m is the Lebesgue measure)
show that m(K1)+m(Kz2) < m(K;1+ Ka). Is the reverse inequality true? What
if we replace compact sets by open sets?

Translate Ko by sup K7 — inf K5. Then the inequality does not change and
the proof is therefore reduced to the case sup K1 = inf Ky(= ¢, say). In this case
KUKy C K1+Ksy—c ( because ¢ € KlﬁKg) and m(K1)+m(K2) = m(Klqu)
( because K1\{c} and K5 are disjoint) so m(K7)+m(Ks) < m(K;+ Ky —c¢) =
m(K; + K3). The reverse inequality fails when K; = Ky = C, the Cantor set.

It is not true that m(U+V) < m(U)+m(V) for all open sets: there is an open
set U such that C C U and m(U) < 1/2. Since [0,2] = C+C C U+U we would
have 2 < m(U+U) < 2m(U) < 1 a contradiction. It is true that m(U)+m(V) <
m(U + V) for any two open sets U and V. Let € > 0 and choose compact sets
H,K such that H CU, K C V,m(U) < m(H) + € and m(V) < m(K) +e. Then
m(U) +m(V) <m(H) + m(K) + 2 <m(H+ K) +2c <m(U + V) + 2e.

Problem 333

Let p be a complex Borel measure on R such that the conditions f,, — 0
a.e. [m], f/ s uniformly bounded and each f,, is continuous imply [ f,du — 0.
Show that u is absolutely continuous w.r.t. m.

Proof: let m(A) = 0. Let K be any compact subset of A. Then Ix €
LY(m + |u|) so we can find a sequence {f,} of continuous functions converging

to Irc in L*(m + |u|). Some subsequence {f,, } converges to Ix a.e. [m + |u|].
Let g = max{0, min{ f,,,1}}. Then {gr} converges to Ix a.e. [m + |u|]. Since

m(K) = 0 the sequence {gx } converges to 0 a.e. [m]. By hypothesis /gkdu — 0.

By DCT /gkd,u — /IKdu. Hence p(K) = 0. Since K is an arbitrary compact
subset of A and |p| is regular we get u(A) = 0.

Problem 334
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Let f be a twice continuously differentiable map from R to R such that

//dedy < 0o. Show that f is a constant.

—1—

Note that there is a finite constant C such that | f(x) — f(y) — (x — ) f'(v)] <

C(r — y)? Va,y € [-1,1]. Hence //If(x A (y)‘dﬂcdy < oo. It

lz—y]®
210

|(z—y)f'(y

EE=E |d dy < oo. Hence

11
follows from this and the hypothesis that / /
S1-1

/‘ I‘zy)zlz |da: < oo for almost all y. This implies f'(y) = 0 a.e.. Since f’ is
contmuous the conclusion follows.

Remark: smoothness of f can be replaced by mesurability by approximating
f by smooth fucntions and the result can be further generalized by replacing R
by R™ and [—1,1] by any ball in R™.

Problem 335

Recall Vitali-Hahn-Saks Theorem: if a sequence of complex mesures con-
verges set-wise the limit is a measure. Give a counterexample to show that the
limit of a sequence of positive mesaures may not be a measure even if it is not
identically co. [ See problem 614]

Let pij; =277 if 1 <j <iand p; = 1if j > i. Let p,(E) = anj. This

gives a sequence of o — finite measures on N with the sigma algebra of all subsets.

Claim: p,,1(E) < p,(E) for all E C N. For this it suffices to observe that

P(n+1);j < ppj foralln,j. If j >n then the inequality holds because p,; = 1. If

J <n < n+lthenp,q1); =277 = p,;. Hence p,, 1 < 1, and v(E) = lim pu,, (E)

exists for all E. Note that v({k}) = lim p,,({k}) = limp, = 27* for each k.
(o)

But v(N) = lim y,,(N) = o0 so v(N) # Zl/({k‘})

Problem 336

Show that any function f : [0,1] — [0, 1] can be expressed as g o h where g :
[0,1] — [0,1] is Borel measurable and h : [0,1] — [0, 1] is Lebesgue measurable.

Let h(z) = 2n jf g = Z - with a,, € {0,1} for each n. h is well defined

n=1
if we insist that expansions to base 2 are all infinite expansions ( we define h(0)
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to be 0). Claim: h is strictly increasing (hence 1-1). To see this suppose
o0

oo
Z n < Z bu et k be the least positive integer with ay # by. If ap > by, we
n=1

2’71
n=1
k k 00 oo 0o 0o

1 . — b n bn n b bn n

getgﬁﬁakgkzg %—ET—g %—ET"‘ E an E 5h
n=1 n=1 n=1 n=1 n=k+1 n=k+1
o0 o0 o0
< E % — E gn < E Qi(: 2%) since b,, — a,, < 1 for all n. This
n=k+1 n=k+1 n=k+1

implies that equality holds throughout and ay — b = 1,b, — a, = 1 for all

2
n=1

o0
n > k. But then a,, = 0 and b,, = 1 for all n > k and the expansion Z dn is a

oo oo
finite expansion. We have proved that ay < bg. This implies Z 2?% < Z 23‘%?
n=1

n=1
o0 o0 o0
since Y o — Y2 > L - N 2 = 0 and equality can hold only if
3n 3n - 3k 3n
n=1 n=1 n=k+1

an — b, = 1 and so b, = 0 for all n > k, a contradiction. If z € h([0,1])
we define g(x) = f(h~!(z)). Otherwise we set g(x) = 0. Since h([0,1]) is
contained in the Cantor set, g is 0 a.e. Hence g is Lebesgue measurable. Also
g(h(y)) = f(y) for all y so f =goh.

Problem 337

Does Dominated Convergence Theorem hold for nets of measurable func-
tions?

No! For any finite set I C [0,1] let f; be a continuous function which is 1 on
1
I, takes values in [0, 1] and satisfies the inequality /fj(x)dm < ﬁ (#(I) is
0
the cardinality of I'). Order finite subsets of [0, 1] by inclusion. Then fr(z) — 1

1
for each z but {/f;(x)dx} — 0.
0

Problem 338

Show that X, £ X if and only if Qo X7 % Qo X! for every probability
measure @ equivalent to P. [Q equivalent to P means @) << P and P << Q]

Proof: let ¥, = tan—(X,,) and Y = tan~'(X). Then X,, 5 X iff ¥,, 5 Y.
Also Qo X;' B Qo X 1iff QoY, ' % QoY~!. Hence there is no loss

1
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of generality in assuming that X and X/ s are uniformly bounded. It is clear
that X, 2 x implies X, 2 X and hence QoX;' % QoX . We now
assume that Q o X! % Qo X~! whenever Q is equivalent to P. We have
to show convergence in probability. Let P(A) > 0,0 < ¢t < 1 and Q(B) =
tP(AN B) + (1 —t)P(A° N B). Then @ is a probability measure equivalent

to P. Hence Qo X' % Qo X~! which implies /XndQ — /XdQ. Given
€ > 0 choose t such that =t < ¢/(2M) and t > 1/2 where M is an upper

t
bound for |X| and | X,|"s. Since /XndQ — /XdQ’ < ¢ for n sufficiently large

we get t/XndP+(1—t)/XndP—t/XdP—(l—t)/XdP < ¢ for such n.
A Ac A Ac
But then t/XndP—t/XdP <e+ (1—t)/XndP—(1—t)/XdP < et
A A Ac Ac
2M (1 — t) which gives /Xnde/XdP <S+2MiF
A A

< 2¢ + € = 3e. We have proved that /XndP — /XdP for each A. This
A A

implies that /ZXndP — /ZXndP for any simple function Z € L?(P) hence

for all Z € L?(P). If we show that /XfldP — /XQdP it would follow that

X, — X in L?(P) and hence in probability. [ If a sequence {z,} in a Hilbert
space converges weakly to x and if ||z,| — |z| then |z, —z| — 0. Since
QoX; '™ Qo X! for every probability measure Q equivalent to P we have

PoX; ' PoX ! andso /ngp — /X2dp.

Problem 339

Let (X, d) be a connected separable matric space and assume that X is not
a finite set. Show that there is a measure p on the Borel subsets of X such that
p(U) = oo for every non-empty open set U but p is o— finite.

Connectedness is used only to assert that there are no isolated points. Let

(o]
{z,} be a countable dense set (with z] s distinct) and p = den. If A, =
n=1
{Tn+1,Tnt2,...} then N4, = 0 and UAY = X. Since p(45) = N < oo it
follows that u is o— finite. Suppose U is a non-empty open set and u(U) < oo.
Then U contains at most finite number of z/,s. There is a smaller non-empty
open set containing a single point x,, of {x1,xs,...}. If this smaller open set
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contains a point x other than x,, then some ball around x contains no point of
{1, x2,...}, which is a contradiction. It follows that {z,,} is open (and closed)
which contradicts the hypothesis. Note that if f : X — R is continuous and

|fldp < oo then p({z : |f(x)] > a}) < oo for each o > 0 which implies
{z :|f(z)] > a} is empty for each a > 0,50 f is identically 0!.

Problem 340

If f:R? — R is increasing in each variable does it follow that f is Borel
measurable?

No! Let A = {(z,—z) : € R} and B be a non-Borel subset of A. Let

Oifx < —y
_ Jifox > —y
F@9) =0 1if(zy) cB

2if (z,y) € A\B
f is not measurable because f~1((0.5,1.5)) = B . It is easy to check that f
is increasing in each variable.
Problem 341

Show that there exist continuous probability density functions f,,,n = 1,2, ...

b
supported by [0, 1] such that /fn(x)dx — b —a whenever 0 < a <b <1 but

/fn(as)da: —+ m(A) for some Borel set A.
A

Let A be a Cantor-like set such that 0 < m(A4) < 1. We claim that Lebesgue
measure m belongs to the closure of the (convex) set of all probability measures
on [0,1] which have finite support in A°. If this is false then there exists f €
1

C[0,1] such that /f(x)dx < /fdu for every p which has finite support in
0

A°.. [ This follows from a separation theorem applied to the dual of C]0,1]

1
with the weak* topology]. In particular /f(m)dx < f(y) for every y € A°.
0

1

Since A has no interior A¢ is dense. Hence /f(z:)d:c < f(y) for every y and
0

strict inequality holds on a set of positive measure. This is a contradiction

and so the claim is established. For each probability measure 4 on [0, 1] which
have finite support in A° we can find continous density functions g,, such that
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gndx — p weakly. [ For example if xy € A° then d,, is the weak limit of {g,dz}
n?(z — 2o + 1) ifmo—%gxgmo
where ¢, (z) = n?(zg — x + s)ifxo <@ <xo + % . By taking convex
0if |z — x| < £
combinations we get the same conclusion for any probability measure on [0, 1]
which has finite support in A¢]. It follows that there exist continuous probability
density functions f,,n = 1,2, ... supported by [0, 1] such that f,(x)dx — m and

fn(z) =0 for all x € A. Since /fn(x)dm = 0 for all n but m(A) > 0 we are
A
done.
Problem 342

If X and Y are non-negative integer valued random variables such that
EtX+Y = EtXEtY for 0 <t < 1 does it follow that X and Y are independent?

Nol. Let Ay, ..., Ag be the following sets: A; = (0,1/9), A2 = (1/9,1/6), A3 =
(1/6,1/3), Ay = (1/3,1/2), A5 = (1/2,11/18), Ag = (11/18,2/3), A7 = (2/3,13/18),

As = (13/18,8/9),(8/9,1) and X =Y =1on 4;, X =1,Y =2o0n 4, X =
1,Y =3o0n A3, X =2,Y =1 on Ay,

X=Y=20onA5X=2Y=30n4,X=3Y=10onA4;,X=3Y=2
on Ag, X =Y = 3 on Agy. It is easily seen that both X and Y take the vaues
1,2,3 with probabilities 1/3 each. Hence their common moment generating
function is given by M(t) = # Also EtX+Y = (1/9)t2 + (1/18 + 1/6)t> +
(1/6 +1/18 + 1/9)t* + (1/18 + 1/6)t° + (1/9)t°

= (1/9)82 + (2/9)t% + (3/9)t* + (2/9)t° + (1/9)t6 = (HE+2)2 — pX BV,

Remark: it is trivial to find random variables X and Y which are not in-
dependent such that Ee*X+Y) = Ee®XEe™ Yt ¢ R but X and Y are not
independent: take X =Y with characteristic function e~I*l.

Problem 343

Suppose X,, > 0,{X,,} is uniformly integrable and X,, — 0 a.s. and in L.
Can we conclude that E(X,,|G) — 0 a.s.?

No! Arrange the intervals (i;nl,g%),l < i < 2" n > 1 according to the
dictionary order on the pairs (n,7). Call these sets Ay, Ag, .... Let B, = (0,1/n)
and X,, =nla, xp, on Q= (0,1) x (0,1) with Borel sigma field and Lebesgue
measure. . Then X,, > 0, X,, — 0 at every point and EX,, = m(4,,) — 0. Let G
be the sigma field generated by the first projection which is { Ax (0, 1) : A is Borel
in (0,1)}. A simple verification shows that E(X,|G) = I4,x,1). Of course
T4, x(0,1) does not converge to 0 a.s. Note that {X,} is uniformly integrable
but not dominated by any L' function. [ If it is dominated then we would have
limsup E(X,|G) < E(limsup X,|G). But the left side is 1 and the right side is
0!
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Problem 344

If X s are independent identically distributed positive random variables does
it follow that EX;Xs... = (EX1)(EX>).... assuming that all the products and
expectations exist.

No! Let X/s take values 1/2 and 3/2 with probabilty 1/2 each. Then
EX, = 1/4+4+3/4 = 1so (EX1)(EX3)... = 1. We claim that EX; X5... =
0. Since E(XlXQ...Xn+1/X1,X2,...,Xn) = XlXQXHEXn = XlXQXn it
follows that {X;X5...X,,} is a non-negative martingale. Hence it converges
a.s. We shall show that the limit is 0 a.s. thereby completing the proof. Let
N, = #{k < n: X} = 3/2}. Then X;X5..X,, = (1/2)" N (3/2)V» = 32]:”.
By SLLN applied to {Ix, = 3/2} we see that 1N, — 1/2. Hence log(gzj\;") =
Ny log3—nlog2 = n(LN,log3—log2) —— oo a.s. because 1/2log3—log2 < 0.

Problem 345

Let f : R — R be measurable and f(z + y) — f(x) be continuous for all
y in some set of positive measure. Show that f is continuous. Show that
measurability cannot be dropped. If f(z +y) — f(z) be continuous for all y in
some set with a limit point can we conclude that f is continuous? Does there
exist a set A of measure 0 such that if f(x +y) — f(z) is continuous for all y
in A then If f is necessarily continuous? If A is at most countable show that
there exist f such that f(x +y) — f(z) is continous for all z in A but f is not
continuous. If f : R — C is continuous and f(z+y) — f(z) is an entire function
for all y in some set with a limit point can we conclude that f is entire?

We first note that {y : f(z+y)— f(z) is continuous} is an additive subgroup
of R. Hence, if it contains a set of positive measure than it must be the whole
of R. [ Because m(A) > 0 implies A — A contains an interval around 0]. Now

1
let g(z) = e /@ The function t — /|g(x —t) — g(x)| dx is continuous.|
0

See Rudin’s Real and Complex Analysis, for example]. Let x, — 0. Then
1

/ lg(x + x,) — g(x)|de — 0. We claim that |f(z,)| - oo. If |f(z,)| —

0
then for any x | f(x 4+ x,)| — o0 too ( because f(z, +x)— f(x,) — f(z) — f(0)
by hypothesis, so f(z, +x)— f(x,)} is bounded). It follows that g(x+x,) — 0
1

and Dominated Convergence Theorem gives |g(x)| dx = 0. This is obviously

a contradiction. Hence z,, — 0 implies {f (3?”} is bounded. In other words,
f is bounded in a neighbourhood of 0. Now f(z + y) — f(x) is bounded in a
neighbourhood of 0 and hence f(z + y) is bounded in a neighbourhood of 0.
This is true for each y and it follows easily that f is bounded on compact sets.
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1
Now /[f(m +y) — f(z)]dy is continuous by Dominated Convergence Theorem.
0

x+1

This means / f(y)dy — f(x) is continuous. Since the first term is continuous it

follows that ]Jg is continuous. The conclusion may fail when f is not measurable:
there exists additive non-measurable (hence non-continuous) functions. If f(x+
y) — f(z) be continuous for all y in some set with a limit point can we cannot
conclude that f is continuous: let f = Ig so that f(z +y) — f(x) = 0 for every
rational number y. If f is continuous and f(z + y) — f(z) is an entire function
for all y in some set with a limit point can we cannot conclude that f is entire:

let f(z) = z. If A is atmost countable then the subgroup B of (R, +) generated
by A is also at most countable. Let f = Ig. Then f(z +y) — f(x) is the zero
function for all z € A but f is not continuous since B # R. If A is the Cantor
set of measure 0 then the group generated by A is R (becuase A + A = [0,2])
hence the continuity of f(z+y)— f(z) for y in A implies the same for all y which
implies continuity of f. Hence there does exist a set A of measure 0 such that
if f(z+y) — f(z) is continuous for all y in A then f is necessarily continuous.

Problem 346

Let X and Y be random variables such that X, Y, X +Y, X —Y all have the
same distribution. If the common distribution has finite mean show that X =0
a.s. Prove that the assumption on finiteness of the mean cannot be dropped.

Since 2E|X|=E|(X+Y)+ (X -Y)|=E|(X+Y)|+ E|(X —=Y)| it fol-
lows that X +Y = Z(X —Y) for some non-negative random variable Z. Hence

X(Z-1)=Y(1+Z2). Noting that | Z — 1| < 1+Z we get |Y| (14+2) < | X|(14+2)
which implies |Y'| < |X|. Since both sides have the same mean we get |Y| = |X].
This implies | X|(1+Z) = |X||1 — Z| so 1+ Z = |1 — Z| when X # 0. In other
words X # 0 implies Z=0and X(0—1)=Y(14+0) or Y =—-X. But X =0
implies

Y(14+Z)=0s0Y =0. Hence Y = —X in both cases and X +Y =0 a.s.
It follows that X =0 a.s.

For the counterexample let U,V be i.i.d. with characteristic function e~I*l.
Leth%andY:%.

Problem 347

Let (X, d) be a separable metric space, A be a closed subset such that every
subset of A is open in A. Show that A is at most countable.

If B C A then Ig is continuous on A. By Tietze Theorem we can extend it
to a real continuous function fp on X. The map B — {fp(z,)}, where {z,}
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is a countable dense subset of X, is injective. There are ¢ elements in RN and
so there are at most ¢ subsets of A. Hence A is at most countable. Alternate
proof: A is itself a separable metric space with discrete topology. The open
cover formed by sigletons has a countable subcover.

Problem 348

Let {a,} C R with Z lan| < co. Let S = {Z an : I C N}. Is S closed? Is

nel
it necessarily a closed interval if a,, > 0 for all n?.

Yes. The map 6 which takes {d,,} € {0,1}" to Z ap, where I = {n: 46, =1}
nel
is continuous on {0, 1} with the product topology: given € > 0 choose N such
that Z lan| < e If {699} — {6,} in {0,1}" then there exists jo such that
n>N
69) =6, for 1 <n < N and j > jo. It follows that ‘9({653)}) —0({on})| < 2¢
for j > jo. Tychonoff’s Theorem shows that the range S of this map is compact.
[Note that S is actually a perfect set]. If a,, = 3% then S is the Cantor set, so

j > jo, so S need not be an interval. Z. Nitecki has an article which gives a
complete characterization of subsums of series whose n — th term tends to O.

Problem 349

Let X be a Banach space, M closed subspace of X* such that z*(x) = 0 for
all x* € M implies © = 0. Prove that the following are equivalent:

a) there exists ¢ € (0,00) such that c||z| < sup{|z*(z)| : z* € M, ||z*|| = 1}
for all x € X

b) {z** € X** : 2**(2*) = 0 for all 2* € M} + X is a closed subspace of
X+,

We first observe that {z** € X** : 2**(2*) = 0 for all 2* € M} N X =
{0} by hypothesis. Hence the sum in b) is a direct sum. Suppose a) holds.
Define a new norm on {z** € X** : z**(2*) = 0 for all 2* € M} + X by
lz** + ||, = ||l=**|| + ||z||. It is easy to see that this is a complete norm. If we
show that the new norm is equivalent to the original norm we can conclude that
{z** € X** : 2**(2*) = 0 for all 2* € M} + X is complete, hence closed in X**.

Of course |z** + ||, > ||«** + z|. We claim that ||y**|M| = d(y**, N) for
all y** € X** where N = {z* € X** : 2™ (2*) = 0 for all z* € M}. To see this
we note that if §* € N then |y**(z*)| = |y**(*) — 25" («*)] < [|ly™ — «5*|| [|z*]|
for * € M so [|y**|M|| < |ly** — x*| for all z§* € N which implies ||y**|M|| <
d(y**, N). On the other hand there exists z** € X** such that z** = y**
on M and [[2* = [jy™[M]|. We have d(y™,N) < [ly™* = (y —2")| =
Iz**]l = |ly**|M]||. We have proved the claim. For z € X and z** € N
we have ||[z** + z| > d(z, N) = ||z|M|| ( by the claim, with y** = z) which
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gives ||z** + z|| > sup{|z*(x)| : * € M, ||z*|| = 1} > c||z|| by a). This gives
lo** + 2l = & + =] < & + 2] + 2]z < 1+ 2)[l=** +z|. We have
proved the equivalence of the two norms on N + X. This proves a) implies b).
Now suppose b) holds. Since X + N is complete and ||z** + z||; > ||z** + z|
it follows that the two norms are equivalent ( by Open Mapping Theorem)
and hence there exists C' € (0,00) such that |z**|| + ||z]| = [|z*™* +z|, <
C||lz** + z||. In particular ||z|| < C||lz** 4 z|| for all 2** € N. Hence ||z| <
Cd(z,N) = C||lz|M|| = Csup{|z*(x)| : z* € M, ||=*|| = 1} and a) holds with
1

CcC = ok
Problem 350
Suppose {z,} is a sequence of unit vectors in a Hilbert space H such that

liminf ||, + z|| > ||z|| for all z € H. Show that z,, — 0 weakly. Is this true in
Banach spaces?

We have liminf[l + 2kRe < x,,2 >] > 0 for every z and every positive
integer k. This gives Re < 2,,,# >— 0. [If Re < x,,;,2 >> ¢ > 0 for some {n;}
replace x by —z to get a contradiction. If —Re < x,;,z >>§ > 0 then also we
have a contradiction]. In the real case change = to —z and in the complex case
change z to iz to see that < z,;,z >— 0.

The conclusion may fail in a Banach space: let X = L'[0,1], f,, = nl, 1.

1/n 1
Then/lfn+g\:/ |n+g|+// 1
0 1/n
1/n 1 1/n 1/n
=/0 [In+g\—\g\]+/0 1 and/o Hn+gl—|gl]2/0 - 2] =

1/n
1-2 / lg| — 1 so the hypothesis is satisfied. However the constant function
0

1isin X* and /(fn)(l) =1 for all n so f, - 0 weakly. [ If we redefine f/ s by

fa(z) =2n(L —2) for 0 < 2 < 1 and 0 elsewhere we get a similar conclusion
in CI0, 1]].

Problem 351
Let X be the Banach space of all bounded continuous functions from R into
itself. Show that there is a linear map A : X — R such that Af > 0 for any

non-negative function f in X but the equation Af = / fdu (f € X) does not

hold for any measure p.

If such a measure exists it is necessarily a finite positive measure. Let
Tn = n+ 5,n > 1. Let p(f) = limsup f(z,) for any f € X. Note that
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p(f +9) < p(f) + plg) and p(cf) = cp(f) for ¢ > 0. The map A which
takes a constant function to the constant value is a linear map on the one-
dimensional subspace of constants satisfying the condition Af < p(f). By
Hahn Banach Theorem there exists a linear map A on X mapping 1 to 1
such that A(f) < p(f) = limsup f(z,) for any f € X. Changing f to —f
we get —A(f) < limsup{—f(z,)} = —liminf f(z,). Hence liminf f(z,) <
A(f) < limsup f(z,). In particular A is a positive linear functional. [ Also

IAfl <|Ifll..]- Suppose Af = /fdu (f € X). Let f, be a continuous function

:R — [0,1] such that f,,(z) =1 for || <n and f,(z) =0 for || > n+ 1. Note
that p(f,) = limsupf,(z,,) = 0 for each n. Also f,, — 1 pointwise. By Bounded

m— 00

Convergence Theorem we most have Af,, = / fndp — / ldp = A1 = 1. How-
ever Af, < p(f,) =0 for each n.

Problem 352

Show that there exists non-zero elements f and g in L' (R) such that fxg = 0.
However, f x f =0 implies f = 0.

The second part follows by taking Fourier transform. Let f(x) = 1’2% for
x # 0 and f(0) = 0. Let g(x) = €2 f(x). Then the Fourier transform of f * g
is 0.

Problem 353

Let f : R — R be a given map and let 7 be the smallest topology on R which
makes f continuous. Suppose g : (R,7) — R is continuous. Show that there
exists a unique continuous function h : f(R) — R such that g = ho f.

Suppose f(z) = f(y). If g(x) # g(y) then there exist disjoint open sets U,V
in R such that g(z) € U and g(y) € V. By hypothesis there exist open sets Uy, V;
in R such that ¢g=1(U) = f~}(U;) and g~ }(V) = f~1(V1). Then f(z) € U; and
f(y) € V1. Since f(y) € V1 we have f(z) € V4 too and z € f~1(V;) = g~ 1(V).
Thus g(z) € V contradicting the fact that g(z) € U and UNV = (). This shows
that f(z) = f(y) implies g(z) = g(y). Hence there exists a unique function
h: f(R) — R such that g = ho f. We now prove that h is continuous. Suppose
f(zn) — f(z). If S is an open set containing g(x) then there exists an open set
T such that g=1(S) = f~Y(T). Since = € g~1(S) we see that f(z) € T. Hence
f(z,) € T for all n sufficiently large. But then z, € f~3(T) = ¢g~!(9) and
g(x,) € S for all n sufficiently large. Thus g(z,) — g(x). This proves that h is
continuous on f(R).

Remark: the function h may not extend continuously to R. For example
of f(z) = e71*l and g(z) = el*l the the hypothesis is satisfied and h(t) = %
for all t € (0,1] = f(R). Compare this situation with the following: if Q is a
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non-empty set and f : Q — R is a given map then for any measurable function
g : (2,G) where G is the sigma field generated by f there exists a measurable
function h : R — R such that ¢ = ho f. [ This is proved easily by a simple
function approximation].

Problem 354 [ World turned upside down!]

a) Let p > 1 and ¢ = 1 — p. Let g be a positive measurable function with

g > 0. Let f be a non-negative measurable function which is integrable. Show

that /fpng (/f)p(/g)q

b) Let 0 < p <1, f and g non-negative measurable functions such that f+
g > 0and /fp—i—/gp < 00. Show that (/(f—l—g)p)l/p > (/fp)l/p—i—(/gp)l/p.

The integrals are w.r.t. any positive measure.

We have [ = [(fgrrllg=on) < ([1rgumep [ (qramyplonpi —
/ fPgqt/P[ / J1=1/P. This gives / frPge > / f)P / 4 proving a). Proof of
by we have [(F4 97 = [1(7 0+ [at a0t = [+
gy [+ gy

> ([ [+ gy (o[ (4 gm0 by a) with p

changed to 1/p. Hence (/(f—i—g)p)l/P > (/fp)l/P + ([ g”)V/P.

Problem 355

Let p be a complex measure on (R,B). Let p. be the measure £ —
Re{cu(E)} for each ¢ € A = {z € C: |z| < 1}. Show that the supremum
of the family of real measures {u,. : c € A} is |y].

Remark: setwise supremum of a family of measures is not a mesure in gen-
eral. What we are asked to show is the following: u.(E) < |u| (E) for each E
and if v is a real mesure such that u . (E) < v(F) for each FE then |u| (F) < v(E)
for each E.

It is obviuos that p.(E) < |p| (F) for each E. If v is as above let A = |u|+|v|.

Let g = Z’;,h . Then /Re (cg)d\ = Rec/gd)\ p(E) < w(E) = /hd)\.
B
Since this holds for each Borel set £ we get \Re(cg)| < h a.e. [A]. Since A is
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separable this gives |g| < h a.e. [A]. This implies that u is necessarily a positive
measure and |p| < v.

Problem 356
See also problems 589-592

n
On [0,1] x [0, 1] we cannot write |z — y| as Z fi(x)gi(y) with n € N, f/s and
i=1
gis continuous

e We first show that the functions |z — a;|,1 < ¢ < k are linearly indepen-
dent if the numbers a1, as, ...,ar € [0,1] are distinct. This is easily seen
from the fact that | — a;| cannot be written as a linear combination of
|z —a;|,j # i because |z — a;| is not differentiable at a; whereas |z — a;|

is differentiable at a; for j # i. Now suppose |z —y| = Zf,-(z)gi(y).
i=1

Choose n + 1 distinct points a1, as, ..., ant1. Let o ; = gi(a;),1 < i <

n+1
n,1 < j < n+4 1. The system of n equations Zﬁjai,j =0,1<i<n
j=1
in n + 1 variables 3,, 3, ..., 3,,1 has a non trivial solution. When B;s
n+l n n+1
satisfy these equations we have 0 = Z Z B;fi(x)gi(a;) = Z Bjlz — aj]
j=1i=1 j=1

contradicting the fact that |z — a;|,1 < j < n+1 are linearly independent.

Problem 357

See also problems 589-592

If X, X,,n=1,2,... are random variables taking values in [0, 1] such that
E|X, —a| — E|X — a| for each a € [0,1] show that X,, = X. [ = denotes
weak convergence]

Claim: if f :[0,1] — R is a piecewise linear continuous function then there

exist points 0 = a9 < a1 < ... < ay = 1 and real numbers cg,cq,...,cN
N

such that f(z) = Zci |z — a;] + co. Granting this for the moment we get
i=1

Ef(X,) — Ef(X) for any piece-wise linear continuous function. Since any con-
tinuous function from [0, 1] to R can be uniformly approximated by piece-wise
linear continuous functions it follows that Ff(X,) — Ef(X) for any contin-
uous function f which proves wek convergence. To prove the claim let f be
linear on [a;—1,a;] for 1 < ¢ < N where 0 = ap < a1 < ... < ay = 1. Since
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N
Zci |x — a;| + ¢ is also linear on [a;—1,a;] for 1 < i < N (for any choice of

1=1 N i N
¢;s) it suffices to show that f(0) = Zciai + ¢o and the slope Zci — Zci
i=1 i=1 i=j
N
of Z ¢i |z — ai| + co on [a;_1, a;] coincides with the slope, say m; of f on that
i=1

interval. We define ¢; = ™3 for 1 < j < N —1 and ¢y = —MQmN.
N

Finally we choose ¢ such that f(0) = Z c;a; + cg. This completes the proof.
i=1

Problem 358

Consider the sequence {f,} in {0,1}® defined by f,(z) = [2"x] — 2[2"'z].
Prove that {f,,} has no subsequence converging pointwise to any function.

Suppose fn, — f pointwise on R. Of course each f, is measurable and

hence f is measurable. If 2’;11 < x < 5=7 then either 212;2 <z < % or

2ol <z < 2L, In the first case f,(z) = 0 and in the second case f,(z) = 1.
Let 252 <z +4 5= < 255, Then foym(z+ 55) = (20—2) —2(1— 1) = 0 and
since % <z < 21;};? we have 2;;2 <z < 2;;1 where i = [ — 277! we
get fn(z) = 0 too. Similarly if ;f;}n <z+ Q}n < 2n2+lm then frm(z+ 2%) =1=
frtm(x). Hence frym (x4 55) = faoim(z) for all z € R for all m € N. It follows
that f(z +d) = f(z) Vo € R,¥d € D where D is the set of all dyadic rationals.
Thus f is a function with values in {0,1} which has every dyadic rational as

a period. We prove that such a function cannot be measurable. Let A = {z :

f(z) =1} and B = {z : f(z) = 0}. Then/|]d+A—IA| =01if d € D. By the

continuity of translates in L' we conclude that/ |[Iy+a —Ia| =0 for all y € R.

We claim that I is constant almost everywhere. Let ¢, (t) = ﬁe‘ﬁ/z".

Then it is easy to see that ¢, * I4 is a continuous function which has every
real number as a period. It follows that ¢,, * I4 is a constant for each n. Also
¢ *¥1a — I4in L' so 14 is a constant. To arrive at a contradiction from this we
prove that m((0,1)Nf;*{0}) = m((0,1)Nf,;*{1}) = 5. Indeed for 0 < z < 1 we

have f,(z) =0iff z € 222 <z < 2521 for some 4. Hence m((0,1) N f,1{0}) =

Z 5= = % which of course implies m((0,1) N f;*{1}) = 1. Now
i even ,1<3<2n
the fact that f,, — f pointwise implies m({f > 1/2}) < liminf m({f,, >
1/2}) = 2 and m({f < 1/2}) < liminf m({fn, < 1/2}) = % so f cannot be a.e.
constant.

Remark: by Tychonoft’s Theorem there is a subnet of { f,,} which converges.
The limiting fucntion is non-measurable by above argument.
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Problem 359

Give an example of a map ¢ from [0, 1] into a (necessarily non-separable)
Hilbert space H with the following properties:

a) ¢ is not Lebesgue measurable

b) for each € H the map t —< x,$(t) > is Lebesgue measurable and, in
fact, it is 0 a.e.

¢) ¢~ Y(B) is a Borel set for each open ball B in H.

Let H be a real Hilbert space with an orthonormal basis {e;}o<i<1 in-
dexed by [0,1]. Let ¢(t) = e;. Let A be a non-measurable set in [0, 1].

We claim that =z — Z < m,e; >2 is continuous on H. To see this we
teA

just have to apply triangle inequality: \/Z <z,e >2— \/z <y,e > <
teA teA

Z <x—y,e >2 < |z —yl|. Now {z : Z < z,e; >2# 0} is an open set
teA teA
in H whose inverse image under ¢ is A. This proves a). If x € H the map
t —< z,¢(t) > is 0 a.e. because it is 0 except on a countable set. Finally
{t:llee—al| <7} ={t:1+|z|> -2 < z,e >< r2} is either a subset of
{t :< z,e; >7 0} or the complement of such a set.

Problem 360

Let f: R — R. The following two statements are equivalent:

a) there exists g : R — R such that f = g a.e. and g is continuous a.e.

b) there exists a set A of measure 0 such that the restriction of f to A° is
continuous [ w.r.t. the topology on A¢ induced by the usual topology on R].

To see that a) implies b) just take A = {x : f(x) # g(x)}. For the converse
we define g by g(t) = 1611r4n inf . f(y). [Note that A¢ is dense, so there exist
yeA®,y—

sequences {y,} C A€ converging to t|. It is clear that g = f on A°. Hence f =g
a.e.. We now prove that g is continuous at each point of A¢. Let ¢ € A¢ and
€ > 0. There exists § > 0 such that |f(y) — f(t)| < eif y € A° and |y —¢| <
0. Let s € R and |s—t| < §/2. We claim that |g(s) — ¢g(t)] < e. We have
f(y) < f(t)+€e=g(t)+€ whenever y € A° and |y — t| < §. The same inequality

holds if y € A¢ and |y — s| < §/2. Hence g(s) = liglinf fly) < g(t) +e€ Also
YyEASy—s

fly) > f(t) —e=gt) —ey € A° and |y — t| < ¢, hence whenever y € A® and
ly — s| < 0/2. Therefore g(s) > f(t) — e. This completes the proof.

Remark: above conditiions imply that f is Lebesgue measurable: approx-

imate g by step functions. However not every Lebesgue measurable function
satisfies a) and b).
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Problem 361

Let z and y be unit vectors in a normed linear space X. Let p € [1,00) and
0 <t < 1. Show that ||z — tPy|| < 3p |z — ty| and |z — ty||* < 2P ||z — tPy|.

Writing P as at + (1 — )0 with o = tP~! we get ||z — tPy|| < P71 ||z — ty|| +
(1 —tP71). Now (1 —t*71) = (1 —t)(p — 1)uP~2 for some u € [t,1] and (1 —
p— DuP=2 < (1 —t)(p—1)tP~2 If p > 2 then (1 —t)(p — DuP™2 < (1 —
H(p—1) <llz—tyl (p— 1) and [lz — tPy|| <t~ [l —ty| + |z — tyl| (p — 1) <
plle —ty||. f1 < p < 2 we divide the proof into two cases: if ¢ > 1/3 then
(- 1) = (1= Hp— D2 < (1-t)p— D3P < 30— t)p— 1) so
|z — Pyl <=t o —ty| +3(1 = t)(p— 1)

< 7 o — ty[l43(p—1) |z — tyll < 3p |z — tyl. It < 1/3 then [l — tPy|| <
1+tP <2< 2 < 3p(l—1t) < 3pl|lz—ty|. For the second part we have
lz = ty|l” = llz — tyll” " o — ty|| < (147" [[l& — Pyl +(E—t7)] < 27 |l@ — Py
because [2P — (1+t)P71] ||z — tPy|| > [2P — (1+t)P7L][1—tP] > (1+t)P~L(1—tP) >
(1+ )Pt —tP).

Problem 362

Give a proof of the spectral radius formula for metrices without using Banach
Algebra Theory. You may use the fact that an analytic function on {z : |z| < R}
has a power series expansion on that disc.

Let A be an N x N complex matrix and p = sup{|A| : A is an eigen value

1/n

of A}. Spectral radius formula says p = lim ||A™||”". If X\ is an eigen value

and Az = Az,z # 0 then |A"||z]| = [|A"z| < A" | ||zl| so A < [ A")"/"
for every n. It follows that p < ||A”H1/n for every n. Now 0 < |A] < 1/p
implies A\~" is not an eigen value (by definition of p) and so (I — AA)~"! exists.
Also (I —MA)~! = Madj(l — AA). It follows from this that (I — \A)~!
is analytic in {z : |2] < p}. For |A| sufficiently small we have (I — AA)~! =
Z A" A™. This can be seen by noting that the series converges for |A| < ||A] ™"

n=0
oo

and we have the identity (I — \A) Z A"A™ = I. Tt follows that the formula
n=0
(I-XA)t = Z A"A™ is valid for |A] < 1/p. The radius of convergence of
n=0
Sy (1) (m) (m[1/"
Z )\"ai;b , Where aijl is the (i,7) element of A", is [lim sup aijL ]=t. Since

n=0

1

1/n
this radius is at least p~" we get p > limsup ’al(;})’ . Taking maximum over

1/n

(4,4) we get p > limsup ||A™]|"/" where we have taken the definition of || A as
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max{|a;;| : 1 < 4,7 < N}. Any other norm on N X N matrices will yield the
same formula since all norms on finite dimensional spaces are equivalent.
Remark: we don’t really need power series reprsentations of analytic func-
tions. We used only the following fact which is elementary: let p be a polyno-
mial, ¢; € C\{0}(1 <4 < N) and f(2) = gooryad—z=sr- Then f has a
power series expansion for |z| < min{|¢;| : 1 <4 < N}. In particular, Cauchy’s
Theorem and its consequences have been avoided completely in this proof.

Problem 363

If Y is dense in a Hausdorff space X and if Y is locally compact in the
relative topology from X show that Y is open inX. Hence show that a locally
compact subgroup of a Hausdorff topological group is closed.

Let y € Y. There is an open set U in X such that y € U and the Y — closure
Z of UNY is compact. Note that Z C Y, Z is closed in X and UNY C Z.

We claim that U = [UNY]™ ( where A is the closure of A). Tfue U and V
is an open set containing u then V N U NY is non-empty because VN U is a

non-empty open set and Y is dense in X. This proves the claim. Now U C U=

[UNY]” Cc Z=ZcCY. Thus y is an interior point of Y. For the second part
let H be a locally compact subgroup of a Hausdorff topological group G. Then

H is a Hausdorff topological group and H is dense in H. By the first part we
conclude that H is open in H. But an open subgroup is always closed so H is

closed in I}, hence in G. [ If Hy is an open subgroup of G then H§ = U xHy
$¢H0
and this union is open. Hence Hj is closed]

Problem 364

Let A be a closed subgroup of S' under multiplication. Show that A = S*
or else A is a finite set.

Let B= {z € R:e*® € A}. Then B is a subgroup of (R, +). If B is dense
in R then A is dense in S! because the map p : R — S defined by p(z) = €27
is continuous. In that case A = S*. If B is not dense then there exists a > 0
such that B = {na : n € Z}. But then A = {c" : n € Z} where ¢ = 2™, If
a is irrational then {c" : n € Z} is dense and A = S*. If a is rational then A
is a finite set. [ The fact that {¢" : n € Z} is dense when « is irrational is a
standard. Any book on Ergodic Theory contains a proof].

Problem 365

Let H be a closed subgroup of (R™,+4). If HN L is a discrete subspace of L
for every line L through the origin show that H is discrete.
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Remark: if H be a closed subgroup of (R™,+) which is not discrete then
H N L is a not discrete subspace of L for some line L through the origin. This
implies that H N L is dense in L. Since H is closed we get L C H. Thus H
contains an entire line through the origin.

We assume that H is not discrete and prove that H N L = L for at least
one line L through the origin. If {0} is an isolated point of H so is every other
singleton subset of H and H is discrete. Hence {0} is not isolated. There exists
a sequence {hy} of distinct points of H converging to 0. For each k let my, be the
least positive integer such that |[mphy|| < R where R is such that sup{||Az]| :
k=1,2,..} <R. Then {mghr} C A where A = {y € R" : |y| < R}.
Note that (my + 1)hy ¢ A. Claim: there exists k; T oo and yo € R™ such that
mp; hi; — yo and (my; +1)hg;, — yo. Since {mphy} C A there exists k; T oo and
Yo € R™ such that my, hy, — yo. Since hy — 0 we see that (mg; + 1)hg, — yo
too. The claim is proved. It follows that yo € A and hence yo # 0. Note
that yo € H because H is closed and {mphi} C H. Let L = {tyo : t € R}.
If t € R then H[tmkj]hkj — ty()H < H[tmkj]hk]. — tmkjhkj H + ||tmk].hk]. — ty()H <
|k, || + [¢] ||k, b, — yol| [ We used the fact that |[z] — x| < 1 for any real
number x|. Since hy, = (my, + 1)hg, — my, hr, — yo — yo = 0 it follows that
[tmy;]hy; — tyo which imlies that tyo € H. Thus HN L = L.

Problem 366

Show that there is no meaurable function f : S! — R such that f(ab) =
f(a) + f(b) Va,b € S' and f not identically 0. Does there exist a (non-
measurable) function f : S' — R such that f(ab) = f(a) + f(b) Va,b € S?
and f not identically 07

For the first part define g : R — R by g(t) = f(e®). Then g is a measurable
additive function on R and hence there exists a real number ¢ such that f(e?!) =
g(t) = ct for all t. Since f(e®) is periodic we get ¢ = 0 and f = 0. We now prove
the existence of a function f : S — R such that f(ab) = f(a) + f(b) V,b € S1
and f not identically 0. Let H be a Hamel basis for R over Q. Let tg,%1,... be a
convergent sequence of distinct points in H. Such a sequence exists because H is
uncountable. Let ¢ : H — R be any function such that £(¢;) = j for 7 > 0. Let
g : R — R be obtained by linearly extending . Let f(e) = g(4t). Note that
e = ¢’ implies t = s + 2n7 for some integer n and g(£2t) = g(%s) because
g is additive and g(£22nm) = ng(tg) = n&(tg) = 0. Hence f is well defined.
Clearly f satisfies the functional equation f(ab) = f(a) + f(b) Va,b € S*.

Remarks. there exists f : C\{0} — R such that f(ab) = f(a)+ f(b). Simply
compose the map constructed above with the map z € ﬁ This map cannot
coincide with any branch of the logairthm obtained by deleting a ray through the
origin because these branches are measurable and f is not. If f : C\{0} — Risa
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measurable function such that f(ab) = f(a)+f(b) for all a, b then f(a) = clog|a|
for some ¢ € R.

Problem 367

Let f € C(S') and p be the normalized Haar measure on S'. Show that

/fd,u = nlgroloﬁ Z f(c¥) for any ¢ € S which is not a root of unity.
k=—n

This is immediate from The Ergodic Theorem. Give a proof without using The

Ergodic Theorem.

By Stone-Weierstras Theorem {f; : j € Z}, where f;(z) = 27 spans a dense
subspace of C(S'). Hence it suffices to prove the result when f = f; for some

integer 7. In this case /fdu =0if j#£0and 1if j =0. Let ¢ = €*®. Then 5

n n n
‘S irrati 1 ky _ 1 gk _ 1 ijka  Q;
is irrational. Clearly 5. Z f(e) =33 Z I =52 E e’"*. Since

k=—n k=—n k=—n

n n -1
. p p _i(n1)t —it_—(nt1)t L
E ekt = g etkt 4 g etht = 1=¢ + &= which is bounded (
k=0

1—e®t 1—e—it

k=—n k=—n

n
if cost # 1 we see that ﬁ Z f(c*) = 0if cos ja # 1 which is true since =

k=—n
is irrational.
Remark: a more general result is the following: let G be a compact metric
group and G,,,n = 1,2, ... be an increasing sequence of closed subgroups whose
union is dense in G. Let u, u,, be the Haar measures on G, G, respectively. Sup-

pose characters on G span a dense subsapce of C'(G). Then /fdu = lim /fdun

for all f in C(G). In this case the character group is a countable orthonormal
sequence and it suffices to prove that result when f is a character. In this case

both sides of the equation / fdp =lim / fdu,, are 0 according if f # 1 and 1
if f=1.

Problem 368

Let (X,7,%) be a compact Hausdorff group which is also a topological
semigroup. If left and right cancellation laws hold in X show that X is a topo-
logical group.

By Zorn’s Lemma there is a smallest non-empty closed set C' such that
Cx X C C. Note that C x X is closed, non-empty and (C x X))+« X C C % X.
By minimality of C we get C = C * X. Let ¢ € C. We claim that cx X = C.
First note that (c* X)* X C ¢*x X and ¢* X C C'« X C C. Minimality of C
shows C = c¢x X. Now, if x € X then cxxz+* X = C because cxx* X C C and
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cxxx X *X CcxaxxX. Thuscxzx X = C = Cx X. From this it follows that
zxX =X. [y€ X implies cxy € Cx X =cxx*X so cxy = cxx * z for some
z which implies y = z % z € x * X proving that X C x % X]. From this it follows
by standard arguments that S is a group. x; — x implies z; x 271 — e and
a7l s %27 — zxxx 27! = 2 along a subnet with z; ' — 2. Thus 27! = 2
proving that the only accumulation point of {x;l} is 7. Hence w;l — g7t
and X is a topological group.

Problem 369

Does there exists a probability measure p on the Borel sigma field of R*
which is translation invaraint?

No! Let p1, p2, ... be the projection maps. Choose positive numbers ¢y, ca, ...
such that p{|p;| > ﬁ} < 5. Then pf[p;| > ﬁ infinitely often} = 0 and
chpj converges almost surely. Let M = {(z;) € R> : chxj converges}.
M is a proper linear subspace and p(M) = 1. If © ¢ M then z + M and M
are disjoint and these sets are also Borel sets. Hence they cannot have the same
measure.

Problem 370

Generalize Problem 369 by showing that no Borel probability measure on a
separable infinite dimensional Frechet space (over R) can be translation invari-
ant.

Let u be a Borel probability measure on a separable infinite dimensional

Frechet space X. There exist compact sets K,,n = 1,2, ... such that u(K,) >

— L We may suppose K,, C K,.1. Let M, be the space spanned by K,.

n

00 k o]
Then M, = U{Z a;z; : als € Rials € Ky, |a;| < k Vi} = U M, , where
k=1 i=1 k=1

k
My, = {Z a;x; : ais € Ryals € Ky, |a;| < k Vi}. Note that M, j is compact.
i=1

o0 o0 (o]
[ It is a continuous image of [k, k]* x K¥]. Now M = U U My = U M,
n=1k=1 n=1
is a linear subspace of X. It is a proper subspace by Baire Category Theorem.
[ Each M, ; is closed and has empty interior.( By Theorem 1.22 of Rudin’s
Functional Analysis any locally compact t.v.s. is of finite dimension. If M, j
has nonempty interior then, by translation, there is a compact set H such that

0 € H° But then X = U nH® which makes X locally compact]. Hence
n=1

w(M) =1 and M is a proper subspace which implies that M and M + x cannot

have the same measure when z ¢ M (as in previous problem).
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Problem 371

Show that we cannot have identically distributed random variables X and
Y such that X <Y almost surely.

Let F be the common distribution. For any real number x we have P{Y <
2, X <Y} =P{Y <z} =F(z)and P{Y >2,0 < X <Y} =P{X >z} =
1 — F(z). Since {X < z < Y} contains the disjoint union {Y > z,2 < X <
YIU{Y <z, X <Y} weget | —-P{X <2 <Y} >1-F(z)+ F(z) = 1. Hence
P{X <x <Y} =0 for every x. This is a contradiction.

Problem 372 [A characterization of conditional expectation operators]

Let T : L' — L' be a continuous linear map with ||T|| = 1,71 = 1 and
T(YT(X)) = (TY)(TX) for all X € L',Y € L. [ L' stands for L'(Q, F, P)
where (Q2, F, P) is a probabilty space]. Then there exists a sigma field G con-
tained in F such that TX = E(X|G) for all X € L. The converse is also
true.

The converse part follows from standard facts about conditional expecta-
tions. Suppose now that 7" has the stated properties. Let M = {X € L*> :
TX = X}. Let G be the sigma field generated by M (the smallest one which
makes each X in M measurable). Claim: Y € L° implies TY € L*°. For this we
first verify that [T'(Y)]" € L* for each positive integer n. Indeed, Y and TY € L'
and if [T(Y)]¥ € L' then [T(Y)]**! = [TY][T(Y)]* = T[Y[T(Y)]*] € L' be-
cause Y[T'(Y)]¥ € L'. This proves that [T(Y)]" € L' for each positive inte-

ger n. Now | TY|" = /\T(Y)|” = /|T[Y(TY)”*1H < /|Y(TY)n—1| <

[/ |Y|"]1/”[/ Y ["]1=1/" which shows /|T(Y)|" < /m". So |ITY], <

Y|l Letting n — oo we get | TY]|, < ||Y]|,, proving the claim. Now sup-
pose X € M. We claim that T(X™) = X™ for all n. Indeed, if this holds
for n = k then T(X**!) = (TX)(TX*) = X(X*) = X*+L. Tt follows that
T(p(X)) = p(X) for any polynomial p. Approximating any continuous func-
tion on [— || X, , 1 X|l.] by polynomials we see that T'(f(X)) = f(X) for any
continuous function f. From this it follows that T(f(X)) = f(X) for any
bounded B(R) meaurable f. [ There exist a sequence of continuous functions

{fn} such that / |fn — fldPo X~ — 0. Since T'f,, — Tf in L*(Po X~ 1) we

get Tf,(X) — Tf(X) in L'. There is a subsequence {n;} of the integers such
that T'f,,,(X) — Tf(X) a.s. and f,,,(X) — f(X) a.s. Since T'fy,, (X) = fn,;(X)
for each j we get T'(f(X)) = f(X)]. We conclude that TY =Y for any G
meaurable Y. [{E € G : TIg = Ig} is a sigma field because T1 = 1 and
E, | E implies TIg, — TIg in L*. (Note that Tl = Ig and TIp = Ip
sigma field contains X~ '(A) for any Borel set A in R because TIy-1(4) =
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TIA(X) = Ia(X) = Ix-1(4). Hence it contains the sigma field genertaed by
such sets which is G]. Of course T(T(X)) = T(1(T(X)) = (THT(X) = T(X)
so T? = T. Hence T(X) is G measurable for any X € L'. Now for X € L> and

E € G we have IpT(X) = T(Ig)(TX) = T(XT(Ig)) = T(XIg) so / T(X) =
E

/IET(X) = /T(XIE) To complete the proof we show that /T(X) = /X

for any X € L. This would give /T(X) = /T(XIE) = /XIE = /X
E
E

proving that TX = E(X|G). Consider the adjoint operator T : L — L.
We have 1 = /lT(l) = /[T*(l)]l < |71 < ||IT*]] = IT|| = 1 so equality

holds throughout. Hence T*1 = 1 which gives /T(X) = /XT*(l) = /X for

any X € L™,

Problem 373

Let (Q,F, P) be a probability space and G be a sub-sigma field of F. Let
M = {E(X|G) : X € L*}. Show that, 1 € M, M is a closed subspace of L? and
that max{f, g} € M whenever f and g € M. Prove that any subspace M with
these properties coincides with {E(X|G) : X € L?} for some sub-sigma G field
of F.

Firts part is trivial since {E(X|G) : X € L?} is nothing but the set of all
those elements X of L? which are G measurable. | The fact that E(X|G) € L?
follows by Jensen’s inequality for conditional expectations]. Now suppose M has
the stated properties. Let G ={E € F:Ig € M}. If Iz € M and Ir € M then
Igur =max{Ig,Ir} € M. Since 1 € M it follows immediately that G is a field.
If E, T E and each E,, € G then Ig is the L? limit of {Ig, } C M and hence
E € G. Thus G is a sigma field. Since every simple function in L?(€,G, P)
belongs to M and M is closed it follows that every function in L?(Q,G, P)
belongs to M. Let Y € M and a € R. Then — max{—1,min{0,n(Y —a)}} € M

i >
and — max{—1, min{0,n(Y —a)}} — { 0ifY 2 a . It follows, by Dominated

1ifY <a
Convergence Theorem that Iy .,y € M. Hence {Y < a} € G for every real
number a. Hence Y is G— measurable.

Problem 374
Let (Q,F, P) be a probability space and G be a sub-sigma field of F. Let

X € L' and suppose X and E(X|G) have the same distribution. Show that
X = E(X|G) as..
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Let Y = XT. We claim that Y and E(Y|G) have the same distribution.
Indeed, Y has the same distribution as (F(X|G))* and (E(X|G))" < E(Y|G)
with both sides having the same expectation. Hence (E(X|G))T = E(Y|G) a.s.
which implies that Y = X and E(Y|G) have the same distribution. Since —X
and E(—X|G) have the same distribution we see that (—X)* and E((—X)7"|G)
have the same distribution. This means (X)~ and F((X)7|G) have the same
distribution. If we prove the result for non-negative random variables we con-
clude that X+ = E(X*|G) a.s.. and X~ = E(X |G) a.s.. and hence that
X = FE(X|G) a.s.. From now on we assume that X > 0. Let N be a posi-
tive integer and Xy = min{X, N}. We calim that Xx and E(Xy|G) have the
same distribution. For this note that F(Xy|G) < min{E(X|G), N} and both
sides have the same expectation so equality holds a.s.. Since min{E(X|G), N}
has the same distribution as min{X, N} = X we see that Xy and E(Xy|G)
have the same distribution. If we prove the result for non-negative bounded
random variables we can conclude that E(Xx|G) = Xn a.s.. This is true for
each N and we get F(X|G) = X a.s. in the limit. We now assume that X
is positive and bounded. In this case (E(X|G))? < E(X?|G) and both sides
have the same expectation. Hence (F(X|G))? = E(X?G) a.s.. This gives
E(X —E(X|G))? = EX?+EX?—2B{XE(X|G)} = 2EX?—2E{E(X|G)}? =0
and so X = E(X|G) a.s.

Remark: compare with the following fact: if M is a closed subspace of a
Hilbert space H and P is the projection onto M then |z| = ||Px| implies
x = Px. This is trivial and this gives above result when X € L?. Clearly the
'full force ’ of the hypothesis is not required in above proof.

Problem 375

Suppose G; and G; are sub sigma fields of F where (Q,F, P) is a given
probabilty space. Suppose X — E(X|G;) = E(X|G2) whenever X € L'(Q,G, P)
and FX = 0 where G is the sigma field generated by G; and G5 . Show that at
least one of the sigma fields G, and G, is trivial w.r.t. P.

Motivation: if T is the projection of a Hilbert space onto a closed subspace
then I — P is always a projection.

Let A € G and B € Gy. Putting X = I4up — P(AU B) we have Taup —
E(IA + I — IAQB|g1) = E(IA + I — IAQB|g2) — P(A @] B) Hence Iy —
Ia—E(Ig|G1)+14aE(Ig|G1) = E(14|G2) + I — IgE(14|G2) — P(AUB). If we
prove that G; and G; are independent we can conclude that Ia,p— 14— P(B)+
I,P(B) = P(A)+ Ip — IgP(A) — P(AU B). If P(A\B) > 0 we can evaluate
both sides on A\B to get 1 —1— P(B)+ P(B) = P(A)+0—-0—- P(AUB) or
P(AUB) = P(A). This means P(B\A) = 0. We have proved that P(A\B) =0
or P(B\A) = 0. Independence of A and B no shows that P(A) and P(B)
cannot both belong to (0,1). [Note that if one of the sigma fields G; and G; is
trivial then the stated identity indeed holds]. We now prove that G; and G are
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independent. Put X = Iy — P(A) where A € G1. We get 0 = E(I4|G2) — P(A).
Integrating over any B € Go we get P(AN B) = P(A)P(B).

Problem 376

Let T be a unitary operator on CV such that for every positive integer n
there exists an positive integer k such that T*" is similar to T, i.e. there is
invertible operator S such that 7%" = S~'T'S. Show that T = I.

There is a basis consisting of eigen values so it suffices to show that 1 is the
only eigen value of T. Let {A1, A2, ..., Ay} be the set of eigen values of T. Then
the equation T%* = S~'TS shows that {1, Aa,..., An} = {AF" A5 . Akny
Each ); is of the type )\2 for infinitely many ! (for some j) which implies that \;
and hence \; is a root of unity. There exists an integer m such that A\;" =1 for
each i. But then there exists k such that {1, Az, ..., Ay} = {A7", AEmAkmy
and since )\?7"’ =1 for all j we see that \; = 1 for all 4.

Problem 377

Let G be a compact abelian group and H be a subgroup of the dual group G".
If vy € G"\H and § € M where M is the space of all finite linear combinations
of elements of H show that L?(m) distance between ~ and § is not less than 1.
[m is the normalized Haar meaure on GJ]. Hence show that the only subgroup
of G" which separates points of G is G~ itself.

k
Let 6 = Z cjy; with 7s € H. We claim that /’y')Tjdm = 0 for each j. This
j=1

is because 7, is a character v, not identically equal to 1 and -y, (gg)/’yo (g)dm(g)

/vo(gog)dm(g) = /vo(g)dm(g) S0 /Wo(g)dm(g) = 0. For the same reason

'y;s are orthogonal to each other (assuming, of course, that they are distinct).
k
Now |y — 6|3 = 1+ Z le;|> > 1. The second part now follows by an easy
j=1
application of Stone-Weierstrass Theorem: let Cy(G) be the Banach space of
bounded continuous complex functions on G with the supremum norm. If H
separates points so does M, which is a subalgebra of Cy(G). Further M contains
constants and it is closed under conjugation. Hence M is dense in Cy(G). This
contradicts the first part if there is an element v in G\ H.

Problem 378
Let © be a complex Borel measure on R such that u(z + E) — u(E) as

x — 0 whenever E is a compact set whose Lebesgue measure is 0. Show that p
is absolutely continuous w.r.t. Lebesgue measure.

185



By regularity of p it suffices to show that u(E) = 0. Let dv(z) = I(_s 5)(2)dz.
Then (v *|u|)(E) = /V(E —x)d|p| (z) = 0 since v(E —z) = 0 for all . Hence

0= 35 [ Il (B-av@) = & [ Il (B-)li-sp(@)dw = & [ |uE ~ 2)| I-s.(a)do —
|u(E)| as § — 0.

Problem 379

Let M be a closed subspace of a real Hilbert space H and x € H with
o = d(z, M) > 0. For any my, my € M prove that ||m; —ms|| < {||lz — mq|* —
o2 }12 4 {[la — ms|® — a2}1/2

We have Hx - = (m; — cmg)H2 > a?ifc # 1. Hence ||(z — my) + c(my — z)||* >
|1 — ¢[* a2 and this last inequality holds for ¢ = 1 also. Thus ||z —mq|* +
A ||z — ma|® = 2¢ < 2 —mq,x —my >> (1—c¢)2a?. The validity of this for all ¢
implies that [< z —my,z —my > —a2]2 < [|lz — my || — &2][|Jz — ma||* — a?). |

— — — 2 .
Take ¢ = <Ecmitogezot] Finally, |[my —ms|® = (@ —mi) = (z —mo)|* <

||x—m1||2+||x2—m2|\2—2<x—17211,x—m2> , ,
< [l = ma|” = o®] + [z = ma|” — &®] + 2[|z — ma|* = ]2 [z — ma|” ~
aQ]l/ 2 which gives the desired inequality.
Problem 380

Let K C C be a compact set such that the unbounded component of K¢
contains 0. Show that there is a simply connected open set € such that K C Q
and there is an analytic branch of logarithm in €.

Let ¢, — 00,c¢, belonging to the unbounded component C' of K¢ Let
co = 0. Since there are continuous paths from 0 to ¢y, ¢ to co etc we can find a
continuous map v : [0,1) — C such that y(1 — 1) = ¢, for all n and ~ is linear
in[1-211- %H] for each n . We claim that D = ~[0,1) U {oc} is connected in
the extended plane. If we can write D as the disjoint union of non-empty open
subsets U and V then the connected set [0,1) is contained in either U or V.
Suppose it is contained in U. Then oo € V. Now 4[0,1) C U C V¢ and V¢ is
closed. Since co = lim¢,, = limv(1—2) it follows that co € V¢, a contradiction.
This proves the claim. Let Q@ = D°. Then  is open, [ If {y(¢)} converges in
C either {tx} — 1 or {#x} has a subsequence converging to a point ¢ of [0,1).
In the first case lim y(¢;) = oo and in the second case lim v(t;) = ~(t)]. Clearly
K C Q. Since 0 ¢ Q we only have to show that Q is simply connected. Its
complemenet in the extended complex plane is D which is connected.

Problem 381

Let g : [0,1] — [0, 1] be a continuous map, X = C([0,1]) and define T : X —
X by Tf(z) = f(g(x)). For what continuous functions ¢ is this map compact?
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We prove that T is compact if and only if g is a constant. If g is a constant
then T is compact because [0,1] is compact. Suppose T is compact. Claim:
whenever t, — t in [0,1] we have g(t,) = ¢(t) for infinitely many n. If the
claim is false there exists t,, — t with g(¢,) # g(¢) for all n sufficiently large,
say n > k. There exists functions f,,n = k,k+ 1,... in X such that 0 < f, <
1, fu(g(tn)) = 0 and f,(g(t)) = 1. Then |Tf,(t,) —Tfn(¢)| =1 for all n > k
which implies that {T fnj} is not equi-continuous in X whenever n; 1 oo. Thus
{T f.} has no convergent subsequence which implies that 7" is not compact. We
have now proved the claim. To see why g must be a constant we just have to
observe that {t : g(t) = g(0)} is open and closed in [0, 1]. [ If g(¢,) # ¢(0) for
all n and ¢, — ¢ then g(t) # g(0) by the claim so {t: g(t) # ¢(0)} is closed. Of
course {t : g(t) = g(0)} is closed by continuity].

Problem 382

Prove or disprove that any compact operator on X = LP([0,1]) (where 1 <
p < 00) is a limit ( in operator norm) of finite rank operators.

True. We first make some preliminary observations.

Fact 1: if T,T,,,n = 1,2, ... are bounded operators on a Banach space X
such that ||T,z — Tz| — 0 for each x then ||T,x —Tz|| — 0 uniformly on
compact subsets of X. This follows from triangle inequality and the fact that
{|IT]|} is bounded. [ For a convergent sequence {z,} in the given compact
set | Tpzn —Tanl < {sup |Toll} [len — 2| + 1T — Tal|+ ([T} 20 — ]| so
T,z, — Tz, — 0].

Fact 2: if {S,,} is a sequence of operators such that ||.S,z — z|| — 0 for each
x and if T is a compact operator on X then ||S,T — T|| — 0. This is immediate
from Fact 1.

Fact 3: let G,, be the sigma field generated by the sets [, i), 1 < i < 2",
Let S, f = E(f|G,) . Then the operators S,, satisfy the hypothesis of Fact 2
when X = LP([0,1]).

This is a standard result using uniform integrability of {E(f|G,)} for fixed
f

It follows from Fact 2 that if T' is compact then the finite rank operators
Sy T converge to T in operator norm.

Problem 383

Let T be a bounded operator on a Hilbert space H such that 72 = T and
IIT|| = 1. Show that T is the projection onto its range.

Note that T(H) = {x € H : Tz = z}. Hence T'(H) is closed. Let P be the
projection with range T (H). We have to show that @ — T'() LT (H) for which
it suffices to show that T'(H) C [ker(T)]*. Let y € T(H) and write y as y; + y2
with y1 € ker(T) and y2 € [ker T]*. If we show that [ker T+ C T'(H) it would
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follow that y; = y—vy2 € T(H) and this implies y; = 0 and y = y, € [ker T]*, as
required. It reamins to show that [ker 7]+ C T(H). Let = € [ker T]*\{0}. Then
0=<wz,z—Tz>=|z||" - < z,Ta > so |lz]|* =< 2, Tz >< ||z|||Tz|| < ||«?|
which implies ||Tz|| = |jz|. Since < z,Tz >= |z|* we get ||z — Tz|* =
|z|* + | Tz||> = 2 ||z||> = 0 and = = Tz € T(H).

Problem 384

If T is a compact operator on a Hilbert space H with an orthonormal basis
{en} show that Te,, — 0 but the converse is false.

N
If T is of finite rank than Tx = Z < x,x; > y; for suitable N, z;,y;,1 <
j=1
j < N, soTe, — 0. The general case follows from the fact that |7 — T5,|| — 0
for some sequenec {7} of finite rank opeartors. For the second part define
T : 1?2 — 12 by Te, = n~'/2e; where {en} is the standard basis of I2. Let

N N
TN = Zajej where a; = j7Y/%/a and a = (Zj_l)l/z. Then ||lzy]|* = 1 for
j=1 j=1

el Thus T is not compact.

N
all N and T(zn) = (Z a;j71?)e; =
j=1

Problem 385 [Wilansky]

Let X be a real normed linear space and T : X — X be an additive map. If
sup{||Tz| : |||l < 1} < oo show that T is a bounded linear map. What happens
if the hypothesis sup{||Tz| : ||z]] < 1} < oo is changed to sup{||Tz| : ||z| =
1} < o0?

Fix z with ||z|| < 1 and define ¢ : R — X by ¢(a) = T(azx) — aT(x). ¢
is an additive map so ¢(ra) = r¢(a) if r is rational. Since ¢(1) = 0 we get
¢(r) = 0 for all r rational. Note also that ||¢(a)|| < 2M for 0 < a < 1 where
M is the supremum in the statement of the problem. If r is a positive rational
and a is any real number we can find a rational s such that 0 < ra 4+ s < 1.
We now have ||¢p(ra + s)|| < 2M. But ¢(ra + s) = r¢(a) + ¢(s) = r¢(a) + 0
so ||¢(a)|| < 2M/r. Letting r — oo we get ¢(a) = 0 which gives T'(az) =
al'(z) if a € R and ||z|| < 1. Now let y € X and a € R. We have T(ay) =
T({2alyll}517) = 22 Wl T(55p) = T ({2 lyll} 5757) = aT'(y). We have proved
that T is a linear map and boundedness follows immediately. This is Wilansky’s
proof. Here is an alternative proof: fix gy # 0 and z* € X* and consider the
map a — z*(T(axg)) — ax™(T'(x¢)). This map from R into itself is additive and
vanishes at 1. It is bounded on {a : |a| < 1/|jzo||}. These facts imply that
it vanishes identically. It follows that z*(T(axo)) = az*(T(zg)). Since z* is
arbitrary this givesT'(azg) = aT(x¢) Va € R. Thus T is linear and bounded.
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The case X = R shows that T additive and sup{||Tz| : ||z]| = 1} < co does
not imply that 7" is linear.

Problem 386

Let M be a closed subspace of a real Banach space X and 7 : X — X|M be
the quotient map. When is 7 a closed map?

We claim that 7 is not closed if M # {0}. [If M = {0} then 7 is closed]. Let
x1 be a unit vector in M and x5 be a unit vector not in M. Let C' = {ax1 + bxs :
a,b € R ab = 1}. Using linear independence of x; and x5 it is easy to see that
C'is closed. [ axy+bxs — a and axq +bxy — b are well-defined linear maps on a
finite dimensional space, hence continuous]. Note that 7(C) = {bza+M : b # 0}
which is not closed since it contains {%332 + M} which converges to the zero
element of X|M which does not belong to w(C).

Problem 387

Let X be a compact Hausdorff space and Y be a closed susbset of X. Let
M={feC(X): f=0o0nY}. Show that C(X)|M is isometrically isomorphic
to C(Y).

Define T : C(X)|M — C(Y) by T(f+M) = fy where fy is the restriction of
ftoY. If f € M then fy = 0soT is a well-defined linear map. Tietze Extension
Theorem shows that T is onto. T is obviously one-to-one. We now show that
If+ M| = l[fyll. Since |[f +gll > sup{[f(z) +g(z)| : € Y} = |fy]| for
all g € M it follows that | f+ M| > |fyl. Now let ¢ > 0 and U = {z :
|f(@)] < |lfy||+¢e}. Uisopen and Y C U. There exists a continuous function
g:X —[0,1] such that g=0on Y and g =1 on U°. Now || f+ M| < ||f + 4]
On Y [f(z) = f(x)g(x)] < [[fy. If © € U then |f(x) — f(z)g(x)] = 0. Let
z € U\Y. Since 0 <1— g <1 we have |f(z) — f(z)g(z)| < |f(@)] < |Ify] +e
Thus || — fg|l < | fv | +¢. Since fg € M we get | f + M| < | f| +<.

Problem 388

Let K be a compact subset of C with non-empty interior. Let A(K) = {f €
C(K) : f € H(K°} where K° is the interior of K and H(K") is the space of
all holomorphic functions on K°. If z € K show that f(z) = [ fdu, f € A(K)
for some probability measure p on K.

If z € OK take u to be §,. Suppose z € K°. Then |f(2)| < sup{|f({)|: ¢ €
I(K%)} by Maximum Modulus Theorem. Let M = {f € C(0K) : f extends to
an element of A(K)}. The map f € M — f(z) € C is a well-defined continuous
linear functional since the extension of elements of M is unique. The norm
of this functional does not exceed 1. [ Let C be the connected component of
KY containing z. Then 0C C 0K° C 0K so the values on 0K determine
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values on 9C, hence in C]. By Hahn-Banach Theorem we can extend this to a
continuous linear functional on C'(0K). Hence there exists a complex measure
p on OK such that f(z) = [ fdp for all f € M. Clearly ||p| < 1. This fact
and the fact pu(0K) = 1 together imply that p is a positive measure ( hence a
probability measure). [ du = hd|u| with |h| = 1 a.e. [|u]] and 1 = [ hd|p| so
1= [Rehd|p| < [1d|u| =1so Reh =1 = |h| a.e. [|p|] which implies h =1
a.e. [|p]] and p = |p].

Problem 389

Let X be a Banach space and T : X — X be a linear map such that 72 =T
and the null space and range of T' are both closed. Show that T is continuous.

Let M = T7'{0} and N = T(X). By hypothesis M and N are closed
subspaces. Since = (r—Tz)+Tx we have X = M+ N. Further M NN = {0}.
This implies that the projection maps M +N — M and M+ N — N have closed
graphs and hence are continuous. [ Suppose, for example, {z,} C M, {y,} C
N, x4y, — z+y (withae € M,y € N) and z,, — z. Then y,, — x+y—z. Hence
x+y—z € N. But then z—z € N whereasz and z € M soz—z € MNN = {0}.
Thus z = x which is the projection of z+y on M]. If ,, — x then the projection
of z,, on N is Tz,, and that of z is Tz so Tz,, — Tz.

Problem 390

Give a simple proof of the following fact without using Egoroff’s Theorem:
if fp — f a.e. and || full, — [If]l, < oo then [|f, — f|, — 0.

Proof due to Novinger: 2P[|f,,|"+|f[*]—|fn — f|" — 2PT | f|* and 27[|f, " +
[£IP] = | fn — f|* = 0. Just apply Fatou’s Lemma.

Problem 391
Show that ¢ is not isometrically isomorphic to cg.

We show that the closed unit ball of ¢ has extreme points, but that of ¢y has
none. Let {a,} be in the closed unit ball of ¢y and choose N such that |a,| < 3
forn > N. Let z, =y, = a, forn =1,2,... N — 1,2, = a, +27"(n > N)
and y, = a, —27"(n > N). Then {a,} = 3{z,} + 2{b,} and {z,},{yn} are
in the closed unit ball. Thus there are no extreme points in the unit ball of
¢p. However (1,1,...) is an extreme point in the unit ball of ¢ since (1,1,...) =
t{ent+ (1 —¢t){yn} implies 1 = tx, + (1 —t)y, <t+(1—-t)=land z, =y, =1
for all n if 0 < ¢ < 1 and {z,}, {yn} belong to the unit ball.

Problem 392
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Find extreme points of the closed unit ball A of LP(u),1 < p < oo.

If 1 < p<oothen f €A is an extreme point of A if and only if ||pr =1.

Proof: of course, only if holds. Suppose ||f||p = 1. Suppose f =tg+(1—t)h
with 0 < ¢t < 1 and g,h € A. It is obvious that [g][, = 1 and |[A], = L.
Now 1= [|f" = [ltg+(L— P < [{tlgl + (L — )bl < [ltlg + (1 -
t)|h|’] = t+ (1 —t) = 1 where we have used the fact that a — aP is convex
on [0,00). Since a — aP is strictly convex it follows that |g| = |h| a.e.. Since
[tg + (L —t)h| =t|g| + (1 —t) |h| a.e. we get g =h a.e.

If p = oo then f € A is an extreme point if and only if |f| =1 a.e.

Proof: suppose |f| = 1 ae.. If f = tg+ (1 — t)h with [|g||., < 1 and
Ihll, < 1then 1 =1f| <tlgl+(1—t)|a] < t+(1—1) = Lso gl = 1 = |n]
a.e. Since |tg+ (1 —t)h| = tlg] + (1 —t)|h| a.e. we get g = h a.e.. Now
suppose E = {z : |f(x)| < 1—J} has positive measure for some ¢ > 0. We have
f=3H{(f+0)Ig+fIge}+{(f—0)Ip+ fIge}] and the functions (f+0)Ip+ fIge
and (f —)Ig + fIge belong to A. Tt follows that if f is an extreme point then
E has measure 0 for each § > 0 which means |f| =1 a.e.

If p=1then f € A is an extreme point if and only if f = @ ul(ﬁx) for some
p1— atom A and some real number a.

Proof: let || f||; = 1. For any measurable set A such that 0 < [, |f] <1

WehavefoA|f|%+fAc f|%

point. Hence, if f is an extreme point then [ 4 |fI'=0o0r 1 for every measurable
set A. Let A = {f # 0}. If this set ( of positive measure) has a subset B with
0 < u(B) < pu(A) then [ |f| € (0,1), a contradiction. Thus, A is necessarily an
atom. This implies that f is almost everywhere constant on A. Hence f = cly
for some constant c. Since || f||; = 1 we have |¢| u(A) = 1. This proves the ’only
if 'part. Now suppose f = e'® #I(j}‘) for some p— atom A and some real number
a. Suppose f =tg+ (1 —t)h with 0 <t <1 and ||g|; = ||h||; = 1. Since A is an
atom, g and h are constants on A. Since 1 = [ |f| <t [|g|+(1—t) [ |h] <1 and
L= [t S, 1ol + (1—1) [, bl < 1 we sée that [} lg] = [ lgl [, bl = [ |A
(iie. g =h =0 on A°) and the constants g and h are such that g/h is non-
negative and since |g| = |h| = ﬁ we get g = h a.e.

which shows that f is not an extreme

Problem 393

Let X be a Banach space and T be a bounded operator on it. Show that
Z |IT"z|| < oo for all z € X if and only if there is a positive integer N such

n
that |7V < 1.

We give the proof assuming that X is a complex Banach space. The real
case can be hndled by complexification. [ See Schechter, Principles of Functional
Analysis]. If HTN H < 1 then any positive integer n can be written as Nk+j with

0<j<N,ke{0,1,2,..}. We have |[T"z|| = || TN iz| < HTNHkmaX{HTlH :
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0<I< N} Asn — oo, k — oo too and since ||TNH < 1 it follows that
ZHT":EH < oo. Conversely let Z||T"x|| < oo for all z. Let |\ > 1. If

n n
Tx = Az,x # 0 then Z IAI" ||z|| < oo a contradiction. Hence T'— AI is one-to-
n
one. To prove that it is onto we define xz,, = %Tmn,l + %u for n > 1 where z
n—1
and u are fixed vectors in X. Note that z,, = %T”xo + Z ﬁu The series
j=0

(o9}

Z e u converges and 11"z — 0 because Z |T"zo]| < oco. Hence {z,}

j=0 n

converges. Let z = limz,. Then z = %Tx + %u which says Tx — Az = —u.

Since w is arbitrary we have proved that T — Au is onto. By oopen mapping

theorem T — AI is invertible. Thus |[A| > 1 implies A ¢ o(T'). It follows that

o(T) is a compact subset of {A € C: || < 1} and hence the spectral radius p of

T is less than 1. By the spectral radius formula we see that ||7"] < 1 for some

n.

Remark: if X is finite dimensional then the two equivalent conditions above

are equivalent to the condition 7"z — 0 for each z. To see thislet {e; : 1 < j <
N N N N

N} be abasis. Then T”(Z zje;)|| = Z:E]T”ej < Z |xj|2 Z ||T”ejH2.
j=1 j=1 j=1 j=1

Thus T"x — 0 for each x implies | T"| — 0, which implies that the equivalent
conditions above hold. Of course Z IT™z|| < oo for all € X implies that

n
T"x — 0 for each x and the three conditions are all equivalent.

Problem 394
Let X be a Banach space and T a bounded self-adjoint operator with ||T']| <
2. Show that there exist unitary operators U and V such that T =U + V.

The closed sub-algebra of B(X) generated by I and T is a commutative C*
algebra with identity.[ This is the closure of the set of all polynomials in T7.
Hence it is isometrically * - isomorphic to C(A) for some compact Hausdorff
space A. Tt suffices to show that if f is a real valued function in C(A) with
|| flloo < 2 then there exist g,h € C(A) such that f = g+ h and 1 = |g(z)| =

|h(z)| for all z € A. We just have to take Reg(x) = Reh(z) = @ and
Img(x) = —Imh(z) =4/1 — {@}2 to complete the proof.

Problem 395

Let A be a complex algebra with a multiplicative unit e. Let a € C\{0}. If

ae — zy is invertible show that ae — yx is also invertible. Is this true for a = 07.
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If z or y is invertible show that ae —xy and ae —yx are simultaneously invertible
or non-invertible (for any a € C)

Let a # 0 and ¢ = (ae — xy)~!. Then (ae — yx)(ycx) = aycr — yrycr =
y(ae — zy)cx = yx so (ae — yx)(e + ycx) = ae — yx + yxr = ae. Similarly
(yex)(ae — yz) = aycx — yexyx = y(ae — xy)cx = yz and (e + yex)(ae — yx) =
ae — yx + yx = ae. It follows that (e — yz)™! = a~ (e + ycx). If a = 0 this
is false: 2y may be invertible without yx being so. For example in B(I%) let
T{a,} = (0,a1,as,...) and S{a,} = (as,as,...). Then ST = I but T'S is not
surjective. Suppose x and ae — xy are invertible. If a = 0 then y is invertible
and so is yz. If @ # 0 then the first part can be applied. Similar argument
shows that if y and ae — xy are invertible so is ae — yx.

Problem 396
Give an example of two non-negative definite matrices A and B (over C)
such that AB is not non-negative definite.

4 2 4 -2 12 -6
LetA<2 1>andB<_2 1 >.ThenAB<4 _3>.

The quadratic forms corresponding to A and B are |2z + y|* and |2z — y|*
respectively. AB is not even self adjoint.

Problem 397

Let S :1? — [2 be defined by S{ai,as,...} = {0,a1,a0,...}. U T :1?> —[%is
a linear map such that T'S = ST then T is continuous.
We claim that (T'z); ( the j—th coordinate of T'x) depends only on z1, xa, ..., ;.
In fact Te = z1Tey + z2Tes + ... + z;Te; +T(0,0,...0, 241,42, ...). The last
term is 787 (zj11,Tj42,...) = SIT (x41,2j42,...) and hence its first j coordi-
nates are 0. This proves the claim. Note that (T{z1, z2,...}); = (T{z1,22,...,2;,0,0,0,...}); =

j
Z z;(Te;);. Continuity of T' now follows easily by The Closed Graph Theorem.
i=1

Remark: (Te;); = (Te1);j—+1 for each 4, j with ¢ < j and (Te;); = 0if ¢ > j.
To see this just note that (T'e;); = (IS ter); = (S 'Tey); = (Ter)j—iyr if
i < j and 0 otherwise. [ The identity (T'e;); = (Te1);j—i+1 is trivial if i = 1 so we
have assumed above that ¢ > 1]. Thus Te; determines T' completely. However
Te; cannot be an arbitrary element of {2. For characterization of operators that
commute with S see Hilbert Space Problem Book by Halmos, for example. If
U{a,} = {0,141, azas, ...} where o, > 0 for all n and {«,} is bounded then
any linear map that commutes with U is continuous, by the same argument.

Problem 398
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Let ¢ : C — C be a continuous function, C' being the Cantor ternery
set. Show that there exists a Borel measurable map & : ¢(C) — C such that
#(&(2)) = z for all z € ¢(C).

Remark: this follows from fron general theorems on Borel cross sections (cf.
Topology by Kuratowski) but a direct elementary proof can be given.

Define £(z) = inf{c € C : ¢(c) = z}. Clearly this is a well-defined map from
@(C) into C and ¢(£(z)) = z. To show that £ is measurable we prove that it is
lower semi-continuous. Let z, — z. Write liminf {(2,) as lim{(z,,) for some
n; 1 0o. Then ¢(liminf¢(z,)) = lim ¢(£(2n;)) = lim 2,,; = 2. By definition of {
this implies £(z) < liminf &(z,,) as required.

Problem 399

If X is a commutative C* algebra with unit and xax* = x*x does it follow
that we can write = as ¢(y) for some self adjoint vector y and a continous map
¢:o(x) —C?

Remark: it is know that the answer is ’yes
operators on a Hilbert space.

)

if X is the space of bounded

The answer is no: let X = C(T') and = be the identity map : 7' — C.
Suppose there exists a continuous map ¢ : o(xz) — C such that z = ¢(£) where
¢ is real valued. Since z = ¢(£(z)) for all z € T we see that £ is a one-to-one
continuous map from 7" into R. There is no such map because the range, which
is a closed interval, becomes disconnected when one point is removed from it. [
¢! is automatically continuous].

Problem 400

\m

A
Let f € LY(R) be an odd function. Show that sup{ / 1l <AL
1
o0} < oo.
Remark: this shows that Fourier transform from L!(R) into the space Co(RR)
of continuous functions that vanish at oo is not onto. For example, if g(t) = ﬁ
if [t| > 1 and ¢ is continuous (real valued) on R then ig cannot be the Fourier
transform of an L' function. | An integrable function is odd if and only if its
Fourier transform if purely imaginary]

A A A o
We have /f(t) dt = /ff —ite f(x)dxdt = / fz/sm y)dydt | Us-
1 1 1 0
A oo A
ing the fact that g is odd]. Hence / //sm(ty dtf(y)dy. Since
1 01
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A Ay A
/Mdt = /sm(s) ds there exists a constant C' € (0, 00) such that /Sm W) gt <
1

1 y

A oo
C for all y € (0,00) and A € (1,00). Hence /%tSQC/If(y)Idy.
1

Problem 401

Show that the operator S : 12 — 2 be defined by S{a1, as, ...} = {0,a1,az, ...}
has no square root in B(I?).

The adjoint W of S is defined by W{z,,} = {2, 23,...}. If S has a square
root so does W. Suppose T' € B(I?) with T? = W. Let M = T-1{0}. Then
M C W=1{0} = [e1], the one-dimensional space spanned by e; = {1,0,0,...}.
It follows that either M = {0} or it is one-dimensional. In the first case T
and W = T? are one-to-one. This is clearly false ( We; = 0) so M is one-
dimensional. But M C [e;] so M = [e;]. Since 72 = W and W is onto, so is
T. Let e; = Tz. Of course, z # 0. Now Wz = T2z = Te; = 0 which implies
z = ceq for some scalar ¢. Thus e; = Tz = ¢T'e; = 0 a contradiction.

Problem 402 [Extending a metric]

Show that any metric on a subset can be extended to a metric on the big
set.

Let A C B and d be a metric on A. Fix A. Define D(x,y) = d(z,y) if
and y € A,1if x and y are distinct points of B|A, 0if x =y € B\ 4,1+ d(u, x)
if x € Aand y € B|A,1+d(u,y) if y € A and = € B|A. To prove triangle
inequality a number of cases have to be considered, but D is indeed a metric on
B which extends d.

Problem 403

Show that if a and b are elements in a Banach algebra with unit e then

ab —ba # e.

Suppose ab — ba = e. We prove by induction that a™b — ba™ = na™~!. This
is true for n = 1. Suppose a™b—ba™ = na™ ! for n < m. Then a™+'b—aba™ =
ma™ and a™ba — ba™ Tt = ma™. Adding these we get a™'b — aba™ + a™ba —
ba™tl = 2ma™. Note that a™ba — aba™ = ala™ b — ba™ ta = a|[(m —
1)a™2la = (m—1)a™. Hence a™ b+ (m—1)a™ —ba™*! = 2ma™. This gives
a™ b — ba™*!t = (m + 1)a™. This completes the induction argument. Now
|a™b — ba™|| = n||a”"t||. Since |la"b— ba™| < ||a™7|| [lad]| + [ball ||a™ || we
get n ||| < 2|lal [|b]| ||a™~!||. This implies that a"~' = 0 for n > 2 ||a|| [|b]].
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However the equation ab—ba™ = na™ ! shows that a” ! = 0 whenever a” = 0
and n > 2. It follows that ¢ = 0 which leads to the contradiction e = ab—ba = 0.

Remark: in the case of B(X) where X is finite dimensional there is a onle
line proof: ab and ba have the same trace so dim(X) = ¢r(e) # 0 = tr(ab — ba)

Problem 404

Brouwer’s Fixed Point Theorem says that any continuous map from the
closed unit ball of R™ (or C™) has a fixed point. Does this extend to infinite
dimensional normed linear spaces?

No. Let A be the closed unit ball of [? and define f : A — A by f(x) =
(1/1— ||x||2,x1,m2,...). If f(z) = « then x,11 = x, for all n which implies

2, = 0 for all n. But then 1 = /1 — ||z]|* # 0 = z;.
Problem 405

Does there exist a strictly increasing absolutely continuous function on [0, 1]
whose derivative vanishes on a set of positive measure?

Yes. There exists a set E C [0,1] such that 0 < m(E N1T) < m(I) for every
open interval I C [0,1]. [ Start with a Cantor like set of positive measure;
in each of the intervals that you remove construct another Cantor like set of
positive measure; repeat this process and take the union of all the Cantor like

1
sets that you have constructed]. Let f(z) = /IE(x)dac. Then f has the required

0
properties.

Problem 406

Let f : [a,b] — R be a measurable function. Show that f is approximately
continuous almost everywhere in the following sense: there is a null set E such
that for each = € [a,b]\E there exists a set A, containing z such that the

m[(z—§,z+8)NA,]
26

restriction of f to A, is continuous at z and —lasd—0.

Let ¢ > 0. By Lusin’s Theorem there exists a continuous function g such
that m{y : f(y) # g(y)} < e. Now almost all points of {y : f(y) = g(y)} have
density 1. Let A be the set of all points of {y : f(y) = g(y)} of density 1. If
z € A and f(z) = g(z) then the restriction of f to A is continuous at = ( by
continuity of g) and m[(‘”#w — 1 as § — 0. It follows that there is a
set whose measure is < ¢ such that for almost every point z in the complement
the conclusion holds. Hence the set of points at which the conclusion does not
hold is contained in set whose measure is < €. Since ¢ is arbitrary the proof is
complete.
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Problem 407 [This is same as Problem 23 but the solution is different]

Let f : [0,1] — R be a function such that for every € > 0 there exists
0 > 0 with the property that for any finite number of intervals (a;,b;) with

Z(b,; —a;) < 6 we have ’Z{f(bz) — f(a;)}| < e. Show that f is Lipschitz.
Remark: the hypothesis becomes stronger if we replace ‘Z{f (b;) — flai)}] <
€ by Z |f(b; a;)| < e. Thus if we omit disjointness of the intervals in the

definition of absolute continuity we get a Lipschitz function.

Proof: take ¢ = 1. Given a < b consider the interval (a,b) repeated N
times where N = [;2-]. We get N |[f(b) — f(a)| < 1. Ifb—a < §/2 we get

[f(b) — f(a)|] < % < Ll_l = (baa) < Q(bé_a). For arbitrary a < b we can
b—

find points {¢; } such that a =t < t2 < ...<tg=bandt;41 —t; < /2 for each

i. We get |f(b) |<Z|f 1) |<Z2(tz+1t) 2(b a)

Problem 408

Prove or disprove that if two functions from [0, 1] to R map null sets to null
sets the so does their sum? What about the product?

Both are false. Let ¢ : C — C x C be a continuous surjective map. [ For

example Z 3h (Z a"’;L : ) is one such map|. Write ¢ as (f,g) so

that f and g map C into C. Extend f and g to continuous functions on [0, 1]
by making then linear on the intervals removed in the construction of C'. Since
linear maps map null sets to null sets it is easy to see that f and g do the same.
If « € [0,2] then there exist x1, 22 € C such that © = 21 + z2. Since ¢ is onto
there exists ¢ € C such that (f(¢),g(t)) = ¢(t) = (x1,22). Thus f(t)+g(t) = =.
We have proved that f + ¢ maps C onto [0,2] so it does not map null sets to
null sets. Also, e/ and €9 map null sets to null sets ( because e® is Lipschtz)
and (efe9)(C) = ef19(C) = eFH9(O) = ¢l01 = [1 ¢] so the product efed does
not map null sets to null sets.

Problem 409

Let f : R — R and consider the following properties of f :

a) f has intermediate value property (ivp), i.e. a < b and f(a) < y < f(b)
or f(b) <y < f(a) implies there exists ¢ € (a,b) such that y = f(c)

b) a < b implies f([a,d]) is an interval

¢) f maps intervals to intervals

d) a < b implies f((a,b)) is an interval

Are these conditions equivalent?

It is easy to see that a), b) and c) are equivalent and that a) implies d). d)
does not imply the other conditions: let f(x) = 0 for x < 0,1 for z = 0 and
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sin(1) for > 0. Take a = —1,b = 0,y = 5 to see that a) fails. Using the fact

that 0,1 € f(0,¢) for any € > 0 it easy to see that a) holds.
Problem 410

Let f : R — R be continuous and F be a meaurable set. Suppose f'(x)
exists for each x € E. Show that f(E) is Lebesgue measurable and m(f(E)) <

[ 17w d.
E

See problem 411 for an important application of this problem.

We use Vitali’s Theorem [ Ref: p. 177 of Cohn’s Measure Theory]. We first
prove that m(f(E)) < Mm(E) if |f' ()] < M on E. Let ¢ > 0 and = € E. If
f/(x) > 0 then there exists h, > 0 such that f(z) < f(z+h) < f(z)+ (M +e)h
for 0 < h < hgand |f(x+ h) — f(z)| < (M+e¢) |h| for —h, < h < 0. Similarly if
J'(z) < 0 then there exists h, > 0 such that f(z) < f(z—h) < f(z)+ (M +¢e)h
for 0 < h < hy and |f(z+h) — f(z)] < (M +¢)lh| for —h, < h < 0. If
f'(x) = 0 we choose h, > 0 such that |f(z+ h) — f(x)] < €/2 for |h| < hy.
Let U be an open set such that £ C U and m(U) < m(F) + . We may also
assume that (z — hy,z + h;) C U for each € E. Using the numbers h,, it
is easy to see that we can cover f(F) by a collection of closed intervals such
that for each f(z) in f(E) and each n > 0 there is an interval in this collection
with f(x) as one of the end points whose length is less than 1 and the other
end point belongs to f(F) . By Vitali’s Theorem there is a countable disjoint
sub-collection Iy, Is, ... such that f(E)\(I; Uz U...) is a null set. This gives

m(f(E)) < Zm([n). Let the end points of I; be f(z;) and f(y;). We can
ensure that [x;,y;] C U for all 4, f([z;,y;]) C I; and m(I;) < (M +¢) ly; — x|
Thus m(f(E)) < (M +¢) Z ly; — x;|. Since the images of the intervals [z, y;]
are disjoint so are these intervals. Hence m(f(E)) < (M +e)m(U) < (M +
g)(m(E) + ). Letting e — 0 we get m(f(F)) < Mm(FE). We have proved
that m(f(E)) < Mm(E) if |f'(z)] < M on E. By decomposing E into the
sets BN {tj—1 < [f'(z)| < t;} where t}s form a partition of [0,00) we see that

m(f(F)) < /|f’(x)| dx. Measurabilty of f(F) is easy since f maps null sets to
E
null sets.

Problem 411
A function f : [0,1] — R is absolutely continuous if and only if it is a
continuous function of bounded variation and maps null sets to null sets.

If f is absolutely continuous then it is a continuous function of bounded
variation and maps null sets to null sets. To prove that f maps null sets
to null sets we first prove that given € > 0 there exists § > 0 such that
for any finite disjoint collection of open intervals (a1,b1), (az,bs), ..., (ak, bx)

198



with > (b; — a;) < 6 we have Y sup{|f(t) — f(s)| : s,t € [aj,b;]} < e. In-
deed sup{|f(t) — f(s)| : s,t € [a;,b;]} = |f(vj) — f(u;)| for some wuj,v; €
[a;,b;]. Note that |v; —u;j| < b; —a; we have ) |v; —u;| < 6. The inter-
vals (u;,v;) or (vj,u;) are contained in (a;,b;) and hence they are disjoint.
Hence, if § = §(e) is chosen as in the definition of absolute continuity we get
S sup{[f(t) — £(5)] 5 5, € la,b5]} = 21 F(05) — F(uy)] < 2. Now let m(E) = 0
and choose disjoint open intervals (ay,b1), (az,b2), ... such that E C U(aj,bj)

and Y(bj — a;) < 6. Then f(E) C | Jf((a;.b)) and S m(f((aj,b;)) =
S {max f([ay, bj] — min f([az,b;]} < Ysup{[f(£) — £(s)] : 5.t € [a3,b,]} < e.
This completes the ’only if’ part. Now suppose f is a continuous function of
bounded variation and maps null sets to null sets. Since functions of bounded
variation are differentiable a.e. there is a null set A such that f is differentiable

at each point of F if S C A°. By previous problem m(f(E)) < /|f’(a¢)| dx.
B

Now [f(b) = f(a)] < m(f([a,0]) = m(f(A°N ([a,0])) < / ()| de <

Acn([a,b])

| f'(z)| dz which clearly implies absolute continuity of f. [ In the equality

([a,0])
above we have used that fact m(f(A N ([a,d])) < m(f(A4)) =0].

Problem 412

Let f :[0,1] — R be absolutely continuous with f’(z) > 0 a.e.. Then f~!is
absolutely continuous on [f(0), f(1)].

We first show that if f:[0,1] - R, E = {x : f'(z) exists and is non-zero}
and if m(A) = 0 then m(f~1(A)N E) = 0.

A corollary of this is the following:

Let f:[0,1] = Rand E C {z: f/(x) exists and is non-zero}. If f(E) is a
null set then so is E.

(Proof just take A = f(E)).

Let FF = {z : f'(z) exists and f'(z) > 1}. For any rational number r we
define F,. = {x € F : w > 1 for all y € [r,x)}. Let B be the set of
points of Fy at which Fy has density 1. [ m(Fp\B) = 0 so B is dense in Fp).
Claim: f is increasing on B. Let 1 < x2 with 21,22 € B. Since 21 € [0, z3)
and o € Fj we have % > 1. Hence f(z1) < f(z2). This proves the
claim. Let ¢ > 0 and U be an open set containing A such that m(U) < e. If
x € BN f~1(A) then there exists a sequence of intervals U, ,, = (z — 1y, +15)
such that r,, — 0 (r],s depend on ), x 7, € B,(f(x —r,), fx +1r,)) CU
and f(x+1,) — f(x —r,) > 2r,. [ Since x € B we have f(z) — f(z —7,) > 70
and since z +r,, € B we have f(x +r,) — f(z) > ry]. The intervals {U, ., : = €
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BN f~1(A),n > 1} form a Vitali cover of BN f~1(A). Hence there is a disjoint
sequence {(z—r,,x+r,)} from the collection such that m(BNf~1(A)) < 3 2r,,.
But (f(zn — r0), f(zn + 7)) C U and the intervals (f(x, — 1), f(zn + 7))
are also disjoint so m(B N f~1(A)) < e. This proves that m(Fy N f~1(A)) = 0.
Similarly m(F,. N f~*(A)) = 0 for each r which implies m(F N f~1(4)) = 0.
Also the inequlaity f/(z) > 1 can be replaced by f’(z) > 1/n and also by
f'(z) < —1/n hence m(E N f~1(A)) = 0.

Next we prove the following:

Let f:[0,1] = R and E C {x: f'(z) exists}. Then f(F) is a null set if and
only if f/ =0 a.e. on E.

Proof: The inequality m( V< [o f 5 ( see Problem 410) proves that
if 'part. If f(F) is a null set then above result 1mphes that f' =0 a.e. on E.

Now note that f(z) = f(0) —|—/f’(t)dt so f is strictly increasing. Hence f~!

exists. Now f~! is continuous and strictly increasing. If E C {z : f'(x) > 0} is
measurable then (f~1)’ exists on E. If m(E) > 0 the it is not true that f’ =0
a.e. on E and hence m(f(E)) > 0 by above corollary. Thus m(f(£)) = 0 implies
m(E) = 0. Since f is a homeomorphism this is equivalent to the statement
m(E) = 0= m(f~1(E)) = 0. But any continuous function of bouded variation
which maps null sets to null sets is absolutely continous so f~! is absolutely
continuous.

Problem 413

Let F' be a continous singular probability distribution function. Show that
there is a set E of measure 0 such that F'(E) has positive measure.

By Problem 410 m(F({z : F'(z) =0})) =0. Let S = {z : F'(z) = 0}. Then
m(F(S)) =0 and hence m(F(S°)) > 0. Take E = S°.

Problem 414

Give an example to show that composition of two absolutely continuous
functions need not be absolutely continuous.

Let f(z) = a%sin*(£),z # 0,f(0) = 0 and g(z) = /2. Then f and g
are both absolutely contlnuous on [0,1]. f is absolutely continuous because

|f'(z)] <2+ 7 for all z. g is so because ﬁ € L'([0,1]) and /ﬁdy = g(x)

0
for all z. We prove that g o f is not of bounded variation on [0, 1]. This implies

)| =

that g o f is not absolutely continuous. Consider Z ’g(f(l)) —
n=1
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sin( &%) — n%rl sin(

(n+1)7
2

= 0o because | L sin(2E) — L gin
) n 2

(ntD)my|
n+1 ) -

2

if n is odd and n%rl if n is even.
Problem 415

Let f € L'([0,1]). Given € > 0 show that there is a continuous function g
such that ¢'(z) exists and equals f(z) almost everywhere, |g(z)| < ¢ for all

and ¢(0) = ¢g(1) = 0.

xT
Let ¢(x) = /f(t)dt. There is a partition {¢;}1<;<x of [0,1] such that the
0

oscillation of ¢ on [t;—1,t;] is less than e for each i. There exists a continuous
singular function h; on [t;—1,t;] such that h;(t;—1) = ¢(ti—1) and h;(t;) = o(t;).
[If ¢(t;—1) # &(t;) we can take any continous singular function on £ on [t;_1, ;]
and take h; = af + 8 for suitable o and 8. Otherwise we can take h;(x) =
c+&((x—t;—1)(t; —x)) where ¢ is a continuous singular function on [0, (%)2]
and ¢ = h(t;) — £(0)]. Clealry we can ’patch up ’ hls into a single continuous
singular function h. Let g = ¢ — h. Then ¢’ = f a.e. and g(0) = ¢(0) — h(0) =
0,9(1) = ¢(1) —h(1) = 0. Now let t,_1 <z <t;. Then |g(x)| = |¢(z) — h(z)| <
osc(¢; [ti—1,t]) < e.

Problem 416

Prove or disprove that any function f : [0,1] — R is the derivative of some
function.

We prove that derivatives have IVP (Intermediate Value Property). Let ¢ :

[0,1] — R be any continuous function and let E = {w ca,b €0,1],a #

b}. Claim: F is an interval. For any two points f(ai:l{(b) and f(Ct)i:];(d) in B
. —t)a+tc)— —t)b+td .
consider v : [0,1] — E defined by ~(¢) = f(((llif))aifcl{{l(ilt);itg ), Assuming,
without any loss of generality, that a < b and ¢ < d we have (1 —t)a+tc < (1—

t)b+td for all ¢ so vy is continuous. Since y(0) = w and (1) = w

it follows that any number between ! (ai:i ®) and £ (021:]; @ g ~(t) for some t,
hence belongs to E. Thus F is an interval. Now, if f is differentiable on [0, 1]
then F = {f’(z) : 0 <z < 1} C E. By Mean Value Theorem E C F. Since E
is an interval so is any set between E and its closure E. It follows that F is an
interval.

Remarks: can we characterize derivatives? Apparently not in any decent
way, according to Logicians. A function has SIVP if the image if any open in-
terval is the entire real line. A nowhere continuous function with SIVP exists.
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Such a function was constructed by Lebesgue. Since derivatives are necessar-
ily continuous on dense sets ( by Baire Category Theorem) the converse the
statemenet of this problem is not true.

Problem 417

Prove that a Borel probability measure P on R is absolutely continuous
w.r.t. Lebesgue measure if and only if sup{|P(4 — th) — P(A)| : A Borel} — 0
as t — 0 for every real number h.

If P <<mand%:fthen |P(A —th) — P(4)| = /f—/f <
A

—th

/ |f(z —th) — f(z)| < [|f(z —th) — f(x)| which — 0 by continuity of trans-
A

lates in L'. Now suppose sup{|P(A — th) — P(A)| : A Borel} — 0 as t — 0 for

every real number h. Let y1;(A) = /\/%efz("j?/zdl’. We have |(u; * P)(A) — P(4)| =

A
| 1y(A = 2)dP(z) — P(A4)]

=/ / \/%e*ij?/QdydP(x) — P(A)| = ‘f P(A-— y)\/%e*fj?/?dy B P(A)‘ <
A—z

[1P(A = y) = PA)] e

=/ ‘P(A - f) - P(A)’ \/%e’Iz/de < fsup{‘P(A — %) — P(A)‘ . ABorel}\/%eﬂg/Qdm
which — 0 as j — oo by Dominated Convergence Theorem. It suffuces, there-

—v*3%/2qy

fore, to show that p;P << m for each j. Now (u;+P)(A) = [ / \/%ejﬁj’zﬂdydlj(x)
A—zx

and / \/%e’yzjzmdy = /\/%e’(y’xﬁjzﬂdy = 0 for each z if m(A) = 0 and
A—zx A
hence (% P)(A) = 0. We have assumed that sup{|P(A — x) — P(A)| : A Borel}
is a measurable function of z. It is, in fact, a (uniformly) continuous function
if sup{|P(A —th) — P(A)| : A Borel} — 0 as t — 0 for every real number h. In-
deed sup{|P(A — z) — P(A — y)| : A Borel} = sup{|P(4A— (z —y)) — P(A)|: A
Borel} - 0asx—y — 0.
Problem 418

Show that R? cannot be expressed as disjoint union of circles:

Remark: it is known that R? is a disjoint union of circles. Ref. Set Theory
For The Working Mathematician by Ciesielski. See also Problem 419 below.
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Lemma

Let C(z,r) and C(y, p) be disjoint circles with y € C(z,7). Then r < p/2.

Proof: we think of R? as C. The point y + pe‘® belongs to C(z,r) N C(y, p)
if |y — & + pe'®| = r which is equivalent to 7% + p? + 2pRe{(y — z)e ™} = r? or
Re{(y —x)e *} = —p/2. If z = |§:§| then this condition becomes Re{ze *} =
—p/2r. Such an « exists if an only if |p/2r| < 1. Hence, if C(x,r) are C(y, p)
are disjoint then p > 2r.

Now suppose R? is a disjoint union of circles {C*};cr. Let Cp = C(x1,71)
be some member of {C*};c;. Having chosen Cy = C(zy,7x),1 < k < m we
take Cpyy1 = C(Tm1,"me1) to be any circle from {C?};c; which contains x,,.
This defines a sequence of circles {C),}. By the lemma we have 7,11 < 7, /2.
In particular C/ s are disitinct, hence disjoint. We have |z, — zp11| = Tnt1
for all n. Since 7, < r1/2""1 it follows that |2, — xpix] < |op — 2pis| +
|.’L‘n+1 - $n+2| + ...+ \xn+k,1 - xn+k| < 7“1/2" + 7“1/27L+1 + ...+ T1/2n+k_1 =
r1/2"71. Hence {z,} is Cauchy. Let zg = limx,. Let C = C(x,7) be a
member of {C?},c; which contains xg. Since |z, — zpik| < |Tn — Tpi1| +
|Tni1 — Toaa| o F | Tnak1 — Toak| <Tn/24+70/2%2+.. 41, /28 < 1, it follows
that |z, — zo| < r,. This implies zg ¢ C(xp_1,7n—1) because |z,_1 — xg| <
| — Tpo1| + |20 — xo| < 70 + 75 < 1. Since z¢ € C(x,r) it follows that
C(z, ) is distinct from each C,,. Thus C N C,, = @ for each n. We arrive at a
contradiction by showing that if n is so large that |z, — zo| < r, < /2 then
cnce, #0. If |z, — x| = r, then o € CNC,. Suppose |z, — zg| < 1. If we
show that C,, C B(x,r) it would follow, by convexity, that B(x,,r,) C B(z,)
which implies that zg € B(zy,r,) C B(z,r) which contradicts the fact that
|x —xo| = r. If it is not true that C, C B(xz,r) then, since C, does not
intersect the boundary of B(z,r) either we get C,, C {z : |z —z| > r}. (By
connectedness of Cy,). In particular |z,, — | > r. Now consider the continuous
function ¢ — |(1 —t)x +txg — zp|. At ¢t = 0 the value is |z —x,|. Attt =1
its value is |zg — 2| < r,. If we can show that |z — z,| > r,, we can conclude
that there exists ¢ € (0,1) such that |(1 —t)z + txg — xp| = 7. It follows
that (1 — t)z + txg € C,. However |(1 —t)z +txg—z| = t|lz —zo| =tr <7r
contradicting the fact that C,, C {z: |z — x| > r}. It remains only to show that
| — x| > rn. We have |x — x| > & — x| — |0 — Xn| > 17— 10 > 10

Problem 419

Can R? be expressed as a disjoint union of open balls? What about closed
balls of (positive radius)?

Connectedness shows that we cannot express R? as a disjoint union of open
balls. Suppose R? is a disjoint union of closed balls. The closed balls contain
points with rational coordinates, so the the collection of these balls is necessar-
ily countable. Consider the intersection of these balls with the unit circle T
Pull back these closed segments by the map x — 2™ to see that [0,1] is a
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countable disjoint union of closed sets. Now apply Problem 229 above to get a
contradiction.

Problem 420

Prove that there exists a set A C R? such that for each x there is a unique y
with (z,y) € A and for every y the section {z : (x,y) € A} is dense in R. Prove
also that there exists a function f : R — R such that f((a,b)) = R whenever
a < b and f is not continuous at any point.

Remark: f has intermediate value property (IVP) since f((a, b)) includes all
numbers between f(a) and f(b). A function f such that f((a,b)) = R whenever
a < b is said to have strong IVP or strong Darboux property.

The second part follows immediately from the first: define f(x) by the prop-
erty (z, f(z)) € A. [ For any y the set f~!({y}) is dense and hence it intersects
(a,b) 50 f((a,b)) = B].

We construct a subset Ag of R? as follows: Ay = {(%a,%a) : @ < ¢} where
the points (24, Yo )a<c are defined by transfinite induction as follows: the family
F consisting of sets of the type (a,b) x {y} with a,b,y € R and a < b has
cardinality ¢. We can write this family as {T}, : @ < ¢}. We pick points (4, ya)
as follows: pick any point (z1,y1) in T1; having picked (x4, yq) for a < 8 we
pick (z3,ys) as any point of T\ U ({za} x R). This set is not empty because,

a<f
if we denote the first projection from R? to R by p; then the cardinality of
p1( U ({za} X R) is atmost that of ) is less than ¢ and the cardinality of p1 (1)
a<p

equals c¢. This defines our set Ag = {(za,yo) : @ < ¢}. Now we define A as
Ag U A{(z,0) : Ao N ({z} x R) = 0}. We now verify that A has the desired
properties. Let z € R. If Ag N ({z} x R) = 0 then (2,0) € A and (z,y) ¢ A
if y#0. If Ao N {{z} x R) # () then there exists y such that (z,y) € 49 C A
and y is unique. Hence for each x there is a unique y with (z,y) € A. Now let
y € R. If a < b then (a,b) x {y} € F and hence there exists o < ¢ such that
(a,b) x {y} = To. Now (24,Ya) € Ty 80 T4 € (a,b) and y, = y. It follows
that z € {z : (x,y) € A} N (a,b). Hence {z : (x,y) € A} N (a,b) is nonempty
whenever a < b proving that {z : (z,y) € A} is dense.

Problem 421

Let A and B be disjoint convex sets in a topological vector space X. If
0 € A° show that there is a non-zero continuous linear functional z* on X such
that Rez*(a) < Rex*(b) for all a € A,b € B.

Remarks: the condition 0 € A° can be replaced by the condition that A
has an interior point. If A is open the there is a stronger separation result: see
Theorem 3.4 a) of Rudin’s Functional Analysis.

We first show that there is a linear functional x* on X and a real number
¢ such that Rex*(a) < ¢ < Rez*(b) for all @ € A,b € B and then show that
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x*is necessarily continuous. Fix y € B Let C = A— B+y. Then 0 € C° and
C' is convex. Let p(z) = inf{t > 0 : +o € C}. Then p is a seminorm. Assume
first that X is a real tvs. On the one dlmenslonal space spanned by y consider
the map ty — tp(y). This is a non-zero linear functional and p dominates it:
tp(y) < p(ty). [ This is an equality if ¢ > 0 and it holds trivially if ¢ < 0]. By
Hahn Banach Theorem there exists a linear functional z* on X extending the
map ty — tp(y) such that 2*(z) < p(z) for all z € X. Note that 2*(a—b+y) <
pla—b+y) < 1. Now y ¢ C and hence p(y) > 1. [ We have used the facts that
C' is conmvex and 0 € C]. Thus z*(a —b+y) <1 < p(y) and so z*(a) < z*(b)
for all @ € A,b € B. In the complex case we define y*(z) = 2*(z) — iz*(iz) to
get a complex linear functional y* withRey*(a) < Rey*(b) for all a € A,b € B.
We now prove that any linear functional z* such that Re 2*(a) < Rez*(b) for
all a € A,b € B is necessarily continuous. Since z*(z) —iz*(iz) is continuous iff
x* is, we may restrict ourselves to the case of real scalars. Let U be a symmetric
neighborhood of 0 such that U C A. Fix b € B. We have z*(u) < z*(b) for all
u € U. Since U is symmetric this gives |z*(u)| < |z*(b)| for all w € U. This
implies |z*(v)| < ¢ for all v € syl iz *(b) # 0 and z* = 0 of z*(b) = 0.

Problem 422
In Problem 421 above can the assumption that A° is non-empty be dropped?

No. Let X = L?([0,1]),A = {f € X : f is continuous and f(3) = 0}, B =
{f € X : f is continuous and f(3) = 1}. Suppose there exists g € (L?)* = L?
such that 0 = [0g < [ fg for all f € B. Since B is dense we get [ fg > 0
for all f € L? which implies g = 0 a.e. [ Proof of the fact that B is dense:
let f € L?,¢ > 0. There exists h continuous such that ||f — h|| < /2. Let
0<d< W There is a continuous function ¢ such that ¢ = h on
[0,1]\(3 = 6,3 +5) ¢=1on (3—32,2+2) and linear in [ + 2, 1 + 4] as well

as on [ — 4,2 — 2]. In this case [|¢||,, < max{[|h||,,1}. Hence ||f — |, <

%+Ilh*¢||2§%+(llhll +116ll.0) V20 <.

Problem 423

Let (X, d) be a compact metric space and C C X be closed. Let T: X — X
satisfy the condition d(T'(x),T(y)) > d(z,y) for all x,y. If either T(C) C C or
C C T(C) show that T'(C) = C.

This is easy from Problem 121 according to which T is necessarily an isom-
etry of X onto itself. If T(C) C C apply Problem 121 with C in place of X. If
T(C) C C apply the first case to T—!

Problem 424 [ From stackexchange.com)]

Let {A,,} be a sequence of events in a probability space (Q,F, P). Show
that the following are equivalent:
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a) P{limsup A,} =1
b) > P(AN A,) = co whenever P(A) >0
c) P(AN A,,) > 0 for infinitely many n whenever P(A) > 0.

Remark: this problem show that if {A,,} is independent and > P(4,,) = oo
then > P(AN A,) = co whenever P(A) > 0. This follows from Borel-Cantelli
Lemma. [ This is obviuosly false without independence: take A, = A€ for all

a) implies b): suppose > P(AN A,) < oo for some A with P(A) > 0. Then
P{limsup(AN A,)} =0, By a) this implies P(A) = 0 a contradiction.

b) implies ¢) is obvious.

(o)
c) implies a): suppose a) is false. Then there exists n such that P{ U A} <

Jj=n

1. Let A=Q\ U A;. Then P(A) > 0and P(ANA;)=0for all j > nsoc) is
j=n
false.

Problem 425

Describe all Hilbert spaces H such that {T' € L(H) : T? = 0} is dense in the
strong operator topology.

In the finite dimensional case {T" € L(H) : T? = 0} is a proper closed subset
of L(H) so it cannot be dense. We claim that it is dense whenever H is infinite
dimensional. Consider a basic neighbourhood N = {T' : |Tx; — Toz;|| < &;
for 1 < i < k} of an operator Ty in the strong operator topology. We have
to show that N intersects {T" € L(H) : T? = 0}. If z; € span{z, : r #
j} then we can find a smaller neghbourhood of Ty contained in N such that
x; does not appear in that neighbourhood. Repeated use of the argumnet
shows that we may suppose that {x1,zs,...,x,} is lineraly independent. Let
{z1,22, s zn} U{y1,Y2, ., Yn} U {zatacs be a Hamel basis for H. We can
choose y!s in such a way that | Toz; — ;|| < €. [No open ball can be contained
in a finite dimensional suspace of H. So, there exists y; in B(Tpz1,€) such that
{1,%2, ..., Tpn,y1} is linearly independent. Then choose yo € B(Tpza,¢c) such
that {x1,22,...,Tn, y1,y2} is linearly independent, and so on]. If Tz; = y;,1 <
1 < kTy; =Tz, =0,1 <i<k,aclthen T extends to a bounded operator
on H with T? = 0. Further T € N.

Problem 426

Let (X,d) be a compact metric space and zg € X. Prove that z( is an
isolated point iff {f € C(X) : f = 0 in some neighbourhood of x} is closed in
C(X).

Remark: {f € C(X) : f = 0 in some neighbourhood of z¢} is an ideal in
C(X). It follows easily from this problem that every ideal in C'(X) is closed iff
X is a finite set.
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If xq is isolated, f, =0 in B(zo,7,) and f,, — f (uniformly) then f(z¢) =0
and {zo} is a neighbourhood of xy. For the converse let f,(z) = ¢,,(d(z,z0))
tif |t| > 2/n
where ¢,,(t) = 0 if |t|<1/n . Note that ¢,,(t) — ¢ uniformly
2|t — 2)if 1/n < Jt| < 2/n
on R. Hence f,(z) — d(x o) uniformly on X. f, vanishes on B(zo, 1) and f
does not vanish in any neighbourhood of zq since {z¢} is not open.

Problem 427

Let T be a bounded operator on a Banach space X such that T'(C) is closed
whenever C' is closed and bounded. Show that the range of T is closed.

Let M = T-'{0}. Suppose Tz, — y. We have to show that y € T(X).
May suppose y # 0. Let «,, = d(x,, M). May suppose «,, > 0 for all n. There

exists y, € M such that 2, > ||z, — yn||. Let C be the closure of {ni":fé"n :

n > 1}. Then T(C) is closed. If ||z, — yn|| — oo then 0 € T(C) (because

0= hmT(H —m H) and T(”igln) € C for each n). Let Tz = 0 with z € C.
Now up, = yn + ||$n - ynH z € M and Hxn - un” = Hi::z:H - ZH ”'rn - ynH-
By the definition of C we can choose n such that ‘ |£"_5"H - ZH < l We then

get ||xn — unll < (20¢n) < o, which contradicts the definition of «,.
Problem 428
Give a simple proof of Tietze’s Extension Theorem for metric spaces.

Let A be a closed subset of a metric space X and f : A — [0, 1] be continuous.
Let F(z) = minf{{l + f(y)td(z,y) 1y € A} — 1 for x € X\A, F(z) = f(z)
for x € A. Then F' is a continuous function from X to [0, 1] which extends f. It is
casy to see that [[inf{{1 + f(y)}d(z1,y) : y € A} = d(z1,y)] = [mf{{1 + f(y)}d(22,9) : y € A} = d(22,9)]| <
3d(z1,x2). It follows that F' is the ratio of two continuous functions on A€.
Hence F is continuous on A°. Now let z € A, {z,} C A° and z,, — z. We
have to show that T A) inf{{1 + f(y)}d(zn,y) : y € A} — f(z) + 1. Sup-
pose lim inf d( mf{{l + fWtd(zn,y) : y € A} < f(z) + 1. Then there
exists § > 0 such that d(mmA) inf{{1+ f(y)}d(zn,y) :y € A} — f(z)+1<
f(z) + 1 — 6 for infinitely many n. Hence, for such n there exists y,, € A such
that {1+ f(yn)}d(@n,yn) < [f(z) + 1 — 6]d(x,, A) . Since the right side — 0
we see that g — . Wo have {1+ /(yn)}d(zn,yn) < [f() + 1 — 5Jd(2n, yn).
Hence f(yn) f(z) leading to the contradiction 1+ f(z) < 1+ f(x)—0. Hence
liminf J—— mf{{l + fly)}d(zn,y) 1y € A} > f(z) + 1. Finally note that
if ey, | 0 and (1+ep)d(zpn, A) > d(mn,yn) with y, € A then d( 1nf{{1 +

f)td(zn,y) -y € A} < (14 f(yn))(l + &p). Since d(azn,A) — 0 we get
(T, yn) — 0 and so g, — 2. Thus g5 nf{{1 + f(y)}d(zn,y) 1 y € A} <
1+ f(yn))(1 +€,) — 1+ f(x) and the proof is complete.
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Problem 429

For a subset A of a topological space X show that the following are equiva-
lent:

a) 0A is nowhere dense

b) A= U U B with U open and B nowhere dense

¢) A= C\B with C closed and B nowhere dense

Remark: dQ has lots of interior points, but the boundary of A has no interior
if A is either open or closed.

This problem characterizes sets whose boundaries have no interior: such sets
have to diiffer from open/closed by a nowhere dense set.

a) implies b): take U = A° and B = A\ A°.

b) implies c): take C = A, B; = A\A. Claim: A\A C BU AU ( where B is
as in b)). Let x € A\A. If z € U then, since z ¢ A we have = ¢ U so = € 9U.
If, on the other hand, x ¢ U then 2 € A|U C B. We have proved the claim. It
is trivial to check that OU is nowhere dense for any open set U. Also the closure
of any nowhere dense set is nowhere dense.

c) implies a): let C, B be as in ¢). Without loss of generality assume that
B C C. Claim: A C BUOJC. If x € A and z € (AU B)? then there is an
open set V such that x € V. C AU B. If z ¢ B then we can conclude that
z € V\B C V\B C A a contradiction since V\B is open (and z ¢ A°). Thus
x€0Aand z € (AU B)? implies z € B. But AUB=Csox € dAand z ¢ B
imply z ¢ C° and hence # € JC. This proves the claim. Since B and dC are
nowhere dense we are done.

Problem 430

Construct a homeomorphism between two intervals which maps a null set to
set of positive measure.

o0 o0

Define f : C — [0,1] by f(z %) = Z . Then f has the same value

2"l
n=1 n=1
at the end points of any of the intervals removed in the construction of C. By

making f constant in the intervals removed we get an increasing continuous
function f from [0, 1] onto itself. Let g(z) = x + f(2),0 < & < 1. Clearly, g
is continuous and strictly increasing. Hence it is a homeomorphism from [0, 1]
onto [0,2]. We claim that m(g(C)) = 1. If (an,bn),n =1,2,... are the intervals
removed in the construction of C then g¢([an,b,]) = c¢n + [an, by] where ¢, =

f(an) = f(bn)., Hence m(g([0,1\C)) = Y m(cn + [an, ba]) = m([0,1\C) = 1
n=1
som(g(C)=2-1=1.] @ is a homeomorphism of [0, 1] onto itself which

maps C onto a set of measure 3].

Problem 431
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Let f, faln = 1,2,...) € L'(p) where p is a finite positive measure. If
/ fndp — / fdu for every measurable set E show that liminf f,, < f <
E E

limsup f,, a.e. provided inf{fy : k > n} € L*(u) for each n.

Let g, = inf{fx : k > n}. By Fatou’s Lemma we have, for any F,
I limkinf(fkfgn)d,u < limkinf S (fr—gn)dp for each n. This gives [, limkinffkd,u <

limkinf Jg frdp = [ f. Take E = {f < limkinffk} to get u(F) = 0. This gives
liminf f,, < f a.e.. To get the second inequality change f,, to —f, and f to —f.

Problem 432

Let P, P,(n =1,2,...) be probability measures on a metric space (X, d) such
that P,(C) — P(C) for every closed set C. Show that P,(F) — P(FE) for every
Borel set E.

Let E be a Borel set and € > 0. There exists a closed set C' and an open
set U such that C C F C U and P(U\C) < e. There exists an integer k
such that |P,(U) — P(U)| < € and |P,(C) — P(C)| < € for n > k. We have
Po(E) < Po(U) < P(U) 4+ < P(C) + 26 < P(E)) + 2¢ and o(E) > Po(C) >
P(C)—e>P(U)—2e>P(E)—2¢ forn>k.

Problem 433

Let [log(1+ ¢f)dP <0 for all ¢ € C where P is a probability measure and
f € LY(P). Show that f =0 a.s.

2 2
We have i/log’l — €| dt = 0. This implies i/logh —ce'|dt = 0 if
0 0

2
le] = 1. By Cauchy’s Theorem we have %/log |1 —ce|dt = 0if || < 1. If
0

27 27
le| > 1 then i/logil — ce'| dt = log|c| + %/logg —e'|dt =log|c|. Thus
0

0
2

2w
i/log |1 — fe'|dt = (log|f|)* . Hence [(log|f])TdP = i/flog |1 — fe'|dPdt <
0 0
0 which implies (log|f|)T™ = 0 a.s. and so |f] < 1 a.s.. Now replace f by rf
where 7 > 0 to get |rf| <1 a.s. for each r > 0. We get f =0 a.s..

Problem 434 [ This and the next few problems are from Dieudonne, Treatise
on Analysis, Vol. 2]
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Let A be a bounded open convex set in R™. Show that m(4 — A) <

2n
( n ) m(A).

Let B=A— A. Then B is a bounded convex symmetric open set containing
0. Let p(z) = (inf{t > 0 : tw € B°})~! for z € B\[0} and p(0) = 0. Note
that 0 < p(z) < 1, (p(x)) "tz € OB and p is continuous on B. [ See my notes
on convexity ( convexity.pdf)]. For 0 < ¢t <1let B, = {z € B: p(z) <t} It
is easy to see from the definition that By = B and p(tx) = tp(x) so By = tB.

Claim 1: m(AN(A+z)) > (1—p(z))"m(A). To show this we note that if z € B
and 0 < & < 1 — p(x) then we can write ST = 01 — ag with ay, a5 € A and

(1—p(z)—e)A+ (p(z)+e)ar = (1 —p(x) —e)A+ (p(x) +€)az + x. Since the left
side of this equality is contained in A and the right side is contained in A+ z we
see that m(AN(A+xz)) > m((1—p(x)—e)A+(p(z)+e)ar) = (1—p(z)—e)™m(A).
Claim 1 follows by letting ¢ — 0.
Claim 2: /(IA % I_4)(z)dz = (m(A))2. For this note that /IA(x +y)dy =
B B

m(BN(A—x)) = m(A—x) =m(A) ifx € A. Hence //IA(x—i—y)dydac =m?2(A).
A B
Fubini’s Theorem shows that the left side of this equation is / / I4(z+y)dydx
B A

and Claim 2 follows by noting that /IA(JJ +y)dy = [Ia(z + y)laly)dy =

A
[ 1a(z —y)Ia(—y)dy

= [Ta(z—y)-a(y)dy = (IaxI_a)(x). Claim 3: m(A) > /(1 —p(z))"dx.

B
We have m2(A) = [ (Ia*I_4)(z)dx
/
= /(IA*I,A)(x)d:E = /m(x—A) N(—A))dz = /m(—x—A) N(—A))dx =
B B B

/m((ac +A)NAdz > {/(1 — p(x))™dx}m(A) where we have used the fact
B B

that B is symmetric. This proves claim 3. We now compute /(1 — p(z))"dx
B

as follows: let {¢; : 0 < i < k} be a partition of [0,1]. Then /(1 — p()"dz =
B
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k—1

Z / (I—p(x))™dx. Note that / (1—p(x))"dx lies
i=0{:1:€B:h§p(:v)<ti+1} {z€B:t;<p(z)<tit1}

between (1 —t;41)"m({z € B:t; < p(x) <tiy1}) and (1 —t;)"m({zx € B:t; <
p(x) < tit1}). Since m({z € B : t; < p(x) < tip1}) =m(By,, — By,) = (£}, —

t")m(B) ( because By = tB) we see that / (1—p(x))™dx lies be-

{zeB:ti<p(z)<tiy1}

tween (1—t;41)" (t7 —t7)m(B) and (1—t;)" (t},, —t7)m(B). However (applying
k—1

Mean Value Theorem to (¢}, ; —t}') we see that) Z(l—tiﬂ)”(t;@l—tn

?

)ym(B) and

E
[

=0
1
(1—t;)™ (¢, —t?)m(B) both converge to /(l—t)"nt"’ldtm(B) as the norm
0

&
Il
=)

1
of the partition {¢;} tends to 0. It follows that m(A4) > m(B)/(l —t)"nt"~Ldt.
0

1
It remains only to show that /(1 —t)"nt"ldt = 2; This is a standard
n
0 n

formula in Statistics; See ’beta distribution ’ in Bickel and Docksum.
Problem 435

Let T be a bounded operator on a Banach space X such that HT"le/” -0
for each z. Show that the spectral radius p(T) of T is 0.

Let ¢ be a non-zero scalar and T,z = - T"z. Since sup{[|T,z| : n > 1} <
oo for each & we can apply Uniform Boundedness Principle to conclude that
sup{||T.|| : » > 1} < oo which shows sup{ﬁ |7 : m > 1} < oo for each c.

This gives p(T') < |¢| for each c.
Problem 436

Let A be a complex Banach algebra and x,y € A with ||e“ye || < M ||y||
with M independent of ¢, z,y. Show that zy = yx.

Let f: C — A be defined by f(c) = e“ye=*. If 2* € A* then z* o f is an
fle+h)—f(c) _ eletMeye—(cth)z_gewy o —ca
- =

entire function:

e ghey o —ew o —hw _

h

cx h

cx — T _ _ —
_ e e““ye —e Ye czﬁecw(my_yw)e T g9 h —

czehwyefczefha:_6cxye—cz . ecz(1+hm)yefcz(17h$)7eczye—cz

cx ehzye’
h

0. [ Estimate the norm of £ - i
for a justification]. The hypothesis implies that 2* o f is bounded. By Liou-
ville’s Theorem we get (z* o f)(c) = (z* o £)(0) for all ¢ and 2 (z* o f)(c) =0
s0 e (xy — yx)e~“* =0 for all ¢. Put ¢ =0.
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Problem 437

Prove or disprove: the collection of all bounded operators on a Hilbert space
H with spectral radius 0 is closed set in B(H) (with the operator norm).

Remark: if H is finite dimensional then any nilpotent operator S on H
satisfies SV = 0 where N is the dimension of H. Hence limits of such operators
are also nilpotent. Also p(S) = 0 implies that 0 is the only eigen value which
implies that SN = 0.

False. We show that there exists a sequence of nilpotent operators converging
to an operator 7' with p(T) > 0. Let H = [ and let {e,} be the standard
orthonormal basis. We define numbers «aq, as, ... as follows: let a,, = e=™ if
there exists a positive integer j and a non-negative integer m such that n =
2™(2j 4+ 1). [Since every positive integer has this form and since j, m are unique
we have defined «, for each n|. Let Te,, = apep41 for all n. T defines a bounded
operator with ||T|| < sup{a, : n > n}. We claim that p(T") > 1. It is easy to see

that HT’“H = sup{@n@ni1...Qpip—1 : n > 1} In particular HT’“H > o0 =

_ p(p+1)
e

2z where p = [}gig] It follows that liminf ||Tk||1/k > 1. We now define

Tren = apentq if n is not of the type 2" (25 + 1) and 0 if n has this form. Since
at least one of the numbers n,n + 1,...,n + 2”71 — 1 has the form 27(2j + 1)
it follows that Tfr =0. [ One of n,n+ 1,...,n + 2" — 1 is divisible by 2". If
that number is a then either a has the desired form or it is of the form 27+¢
and 2"(2" 4+ 1) has the desired form. This last number differs from a by 27 is ir
must belong to n,n + 1,...,n + 2" — 1]. Thus T, is nilpotent for each r. Also
(T —T,)(en)|| = e " if n is of the type 2"(25 + 1) and 0 otherwise. It follows
that |T — T, < e " — 0.

Problem 438

Let Q2 be a compact metric space and u be a regular Borel complex measure
on it such that [ fgdu = ([ fdp)([ gdp) for all f,g € C(2). Show that there
exists « € €2 such that u = 4§, or p = 0.

If f,g € L*(|u|) and € > 0 then we can find continuous functions f; and g;
such that ||f — fi|, < € and ||g — g1]|, < € where ||||, is the norm in L?(|u|). It
follows that | fg — fuglly < I, g — g1l lguly 17 — fill, < (7l +lgll, +
¢). Using this and the fact that [ figidp = ([ fidp)([ g1dp) it follows easily
that [ fgdp = ([ fdu)([ gdw). Thus u(AN B) = u(A)u(B) for all Borel sets A
and B. In particular u(A) = p?(A) and u(A) = 0 or 1 for any Borel set A. Let S
be the support of p. If a,b € S and a # b then there exist disjoint open balls U
and V containing a and b respectively. Hence p(U)u(V) = p(UNV) = 0. Thus
w(U) =0 or (V) = 0. This contradicts the definition of S. Hence S = {z} for
some z. Since |p| ({z}¢) = 0 we get p = ¢d,. Clearly ¢ =0 or 1.

Problem 439
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Define T : L? — L? by Tf(z) = [e~ l2=4l f(3))dy [where L? stands for
(complex) L?(R)]. Show that T is a positive operator whose norm is 2. Also
show that o(T) = [0, 2].

We have e~ 1*l = fem’mdt so<Tf, f>= fffe“(‘”’y)mdtf(y)dy[f(x)]’dydx
and for fixed ¢ we have [ [ €@~ f(y)dy[f(z)]~dydx = Ue‘”’”f(x)dx‘z > 0.
Hence T is a positive operator. From the inequality ||¢ * f||, < ||¢]|; || f]l, with
o(t) = eIl we see that [|Tf|l, < [e7ltldt = 2 so ||T|| < 2. If we show
that (0,2) C o(T) it would follow that [0,2] C o(T) C [0,2] so o(T) = [0,2]
which also implies that | 7] = 2. Fix A € (0,2) and write A as 1+2 > with

€ (0,00). Let f,(z) = e*®e 17/ We claim that |T'f, — Afa|| — 0 prov-
ing that A € o(T) (because ||f,| — o0). [ We have dropped the subscript

in lll,). Now |[Tfa = Aall = ||&fu = Al
—itx wzt —|t\/ndt n_ fe—lnsx ians —| ‘dS _ ’I’L\/ﬂ

Let us compute fn fn(SU) =
Also

\/ﬂfe 1+n2(a+z) .
d(z) = V22—t 1+ 1. It remains to show that |

0 as n — oo. For |a+x|>1wehavem

2
dr —

1-{-;7:2 1+n2(a+x) - 1-i-o¢2 1+n2(a+z)2
< mln{l, T a+$)2} and for

0 < |a+z| < 1 we have ‘

T+z2 1—1-042 1+n2(a+m)2 S 1+:E2 - 1+oz2 2|a+r| S

2

la—z| 1 n 1 n (
1422 14+n2(atz)? 1+a? 1+n?(a+z)?

0.

Using these and Dominated Convergence Theorem we get [

Problem 440
[ This and next few problems are taken from Springer book on Banach Space
Theory]

If |z + yll = ll=ll + llyll then [tz + syl| = t{|lz]| + syl for all £, s > 0.

If ¢ > s then [tz + syl = [[t(z +y) + (s =)yl = tlz+yl = (= s) lyll =
tlzll + ¢yl = (& = s) lyll = tllz]| + s|ly|]| and since the reverse inequality also
holds we get ||tz + sy|| =t ||z]| + s ||ly|l- If ¢ < s replace (¢, s) by (s,t) and (z,y)

by (y, ).
Problem 441

Prove or disprove: if ||[|; and |||, are equivalent norms on X then the closed
unit balls of (X, ||||;) and (X, [|||,) are homeomorphic.

True. A homeomorphism is given by f(z) = Hi“l
2

(0) =

[ Thus closed unit balls under any two norms are homeomorphic if X is finite
dimensional]

Problem 442
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If a linear subspace M of a Banach space X is a Gs set show that it is
necessarily closed. Deduce that if a normed linear space X is homeomorphic to
a complete metric space then it is a Banach space.

Suppose E = M\M is non-empty. Let x € M\ M. By hypothesis M = ﬂ U,

with each U,, open in X. Let V,, = M NU,. Then V, is open in M. Also
M = ﬂVn. Note that M = E U M. If we show that E and M are both of

n —
first category in M we would get a contradiction (by Baire Category Theorem).
First note that M\Vn is (closed and) nowhere dense because M C V,, so V,, is

dense in M. Hence E = U(M\Vn) is of first category in M. Now x + M C E

and hence x + M is also of first category in M. It follows that M is also of first
category in M. This finishes the proof.

Second part: let Y be the Banach space obtained by completing X. The
hypothesis implies that X is a G5 in Y and the first part shows that X is closed
inY.

[ In particular an incomplete normed linear space cannot be homeomorphic
to a Banach space].

Problem 443

If X is a normed linear space on which all norms are equivalent then the
space is finite dimensional.

Let X be an infinite dimensional normed linear space. There exists a linear
functional f on X which is not continuous. Let 2o € X\{0} and |z|" = ||z +
llzoll | f(x)]. If this norm is equivalent to the original norm then there exists
a finite constant C' such that ||z| + [|zo|| |f(z)] < C||z|| which implies that

|f(z)] < ﬁ;—;ﬁ lz|| contradicting the fact that f is not continuous.

Problem 444
Prove the following generalization of Parallelogram identity:

2 n
2 . .
= 2" E l|z:||°. where x}s are vectors in a Hilbert
ese{—1,1}vi lli=1 i=1

space.
Proof is by induction on n. For m = 1 this is trivial and for n = 2 it

reduces to the ordinary parallelogram identity. Suppose this holds for n = k.
2 2

k+1 k
Consider Z Zsixi = Z 2[ foixi +llzrga )] =
ei€{—1,1}Vi<k+1 |l i=1 e €{—1,1}Vi<k i=1

k k+1
2 2 2
24 S a2+ 264 g |2 = 21 S a2
=1

i=1
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Problem 445

If the normed linear space X finite dimensional then the only dense convex
set in X is X itself. If X is infinite dimensional there exist two disjoint dense
convex sets whose union is X.

Let C be a dense convex set in a finite dimensional normed linear space X.
Fix © € X and consider {¢ > 0 : ta € C'}. This is an interval in [0,00). If it
is bounded interval with right end point s then ¢tz belongs to the exterior (i.e.
X\C) of C which contradicts the hypothesis. | See my notes ’convexity.pdf ’].
Hence tx € C for all ¢ > 0 for all x € X, so C = X. Now let X be an infinite
dimensional normed linear space. There exists a linear functional f on X which
is not continuous. Let Cy = {z : f(x) < 0} and Cy = {z : f(x) > 0}. Clearly
these are disjoint convex sets. To show that these two sets are both dense it
suffices to show that f~{a} is dense for each real number a. The range of f is
a subspace of the scalars and it is not {0} so f is onto. Let f(z¢) = a. Then
f~Ha} = 2o+ f~1{0}. It suffices to show that f~1{0} is dense. If it is not there
exists z € X\[f71{0}]". Let y € [f~1{0}]7\f~*{0}. y exists because f~1{0}
is not closed. Now f(y — az) = 0 where a = % Hence y — ax € f~1{0} C
[f~1{0}]~ and az € [f~1{0}]~ too ( because y € [f~1{0}]7). Since a # 0 we
get z € [f~1{0}]™, a contradiction.

Problem 446

Any real valued Lipschitz function on a subset of a metric space can be
extended to a Lipschitz function on the whole space with the same Lipschitz
constant.

Suffices to consider the case when the Lipschitz constant is 1. Let A C X
where (X, d) is a given metric space and f : A — R satisfy |f(z) — f(y)] <
d(z,y) Vx,y € A. Let F(z) = inf{f(y) + d(z,y) : y € A} for x € X. Fix
a € A. For any y € A we have f(y) +d(z,y) = f(a)+d(z,y) — {f(a) — f(y)} >
fa)+d(z,y)—d(a,y) > f(a) —d(x,a). This proves that F(z) > f(a) —d(z,a).
In particular F(x) > —oo. Of course F(z) < oo so F' is real valued. Also,
if z € A then we can use the inequality established above with a = z to get
F(z) > f(a) —d(z,a) = f(x). Since F(z) < f(z) + d(x,z) by definition we see
that F extends f. Now F(x1) — F(z2) —e < F(z1) — {f(y) + d(z2,y)} for some
y € A and hence Flay) — F(z) — ¢ < f(3) + d(z1,9) — {() + d(z2,9)} <
d(z1,22). Let € — 0 to get F(z1) — F(z2) < d(x1,22). Interchange 7 and x4
to get —{F(z1) — F(z2)} < d(z1,22).

Problem 447
Let M be a closed subspace of C[0, 1]. If every function in M is continuously

differentiable show that M is finite dimensional.
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Remark: if a closed subspace of LP(u) is contained in L°°(u) where p is a
probability measure and 0 < p < oo then the subspace is finite dimensional. See
page 111 of Rudin’s Functional Analysis for a proof of the result of Grothendieck.

Define T : M — C[0,1] by Tf = f’. T is linear and it has closed graph.
Hence there exists an integer N such that [|f'|| < N | f]|, for all f € M.
Claim: dim(M) < N. Let {z; : 0 < i < k} be a partition on [0,1] with
max{w;1 —x; : 0 < i < k} < 1/2N. Define S : M — R¥! by Sf =
(f(x0), f(x1),..., f(xg)). If we show that the linear map S is one-to-one we can
conclude that dim M < k + 1. Suppose Sf = 0 and ||f| = 1. If z € [0,1]
then there exists ¢ such that x € [z;_1,2;] and Mean Value Theorem gives
|f(x) = f(zi)] < ||f|lo (xi—zio1) < 2% Since f(z;) = 0 this gives |f(z)| < 1/2
for each x contradicting the fact that ||f]| = 1.

Problem 448

Let H be a separable Hilbert space with ONB {ej, es,...}. Let C be the
closed convex hull of {ej, ez, ...}. Show that the interior of C' is empty.

Remark: it can be shown that the closed convex hull of any weakly conver-
gent sequence in a Banach space has no interior. [ Due to Vesely and Zanco].

o0
Proof: suppose z € C°. Let y = %en. Then x + %y € C for k sufficiently

n=1

e} o0
large. Let D = {Z anen, : Z lan| < 1}. D is a closed convex set. [ Use Fatou’s

n=1 n=1

oo
Lemma to see that D is closed]. Hence C' C D. We can write z as Z bren

n=1

with Z |b,] < 1. Since z + %y € C we also have Z |bn + %| < 1. It follows

n=1 n=1

o0
that Z ’ﬁ‘ < 1 which is absurd.

n=1

Problem 449

Let {z,} converge to x weakly in [?>. Show that there is a subsequence
{xn; } which converges in the Cesaro sense in the norm, i.e. {M}

converges in the norm. [ Due to Banach and Saks]

We may assume that the weak limit of {x,} is 0. Let M = sup{||z,| : n =
1,2,...}. We pick inductively ni,na, ... as follows: ny = 1 and ngy; is chosen
such that |< Tngs Tag iy >| < % for 1 <i < k. Then ||xn1 + Ty + oo+ Ty, H <

H(xm + xnkﬂ) + (Tn, + xTLIc+1) + o+ (0, + xnk+1)|’+(k_l) H‘rnk+1 H and ||z, + xanQ <

216



2M?+2 foreach i < k. If [|@p, + @py + ... + T, |12 < kM242k then |2, + Zny + . + &nys1 || <
EM?+2k+M?+2Re < Tny + Ty + oo+ Ty Ty, >< (k+1)M? 42k +2k1 =
(k+1)M2?+2(k+1) Hence, ||£n, + Zp, + ... + 2n, ||* < kM2 + 2k for all k and

Tny +Tng ot ny || < k]\l]j;—Qk 0.

Problem 450

Any bounded linear map between normed linear spaces is weak-weak con-
tinuous. Is the converse true?

First part follows from definition of weak topology. Converse is also true: let
T : X — Y be weak-weak continuous. Let y* € Y*. Then T~y : |y*(y)| < 1}
is a weak neighbourhood of 0 in X. Hence it is also a neighbourhood of 0 in
the norm topology and so it contains {x : ||z| < ¢} for some 6 > 0. Thus
lz|| < 6 implies |y*(Tx)| < 1. This implies |y*(Tz)| < 2/ whenever |z| < 1.
Hence T{z : ||z|| < 1} is weakly bounded. This implies that T{xz : ||z| < 1}.
[ This is a simple application of Uniform Boundedness Principle: let ||z, | <1
for each n and define T;, : X* — K (= R or C) by T,,(z*) = 2*(x,). Then
sup [T, (z*)| : m > 1} < oo for each z* so sup{||Z7,| : n > 1} < co which means
{||zx||} is bounded].

Problem 451
Find two closed subspaces of a Hilbert space whose sum is not closed.

Let T : 1?2 — I? be any bounded operator whose range is dense but not equal
to 2. [ Example Tx = {a,r,} where 0 < a,, — 0 fast enough; a,, = ,% for
example]. Let H be the direct sum of 12 with itself, M = {(z,Tx) : z € lé} and
N = {(z,0) : = € I?}. Of course, M and N are closed subspaces of H. We claim
that H = [M+N]~ but M+N # H. If b ¢ T(I?) then (a,b) ¢ M+N. If (a,d) is
orthogonal to M + N then < a,x > + < b,Tx >=0and < a,z >+ < b,0 >=0
for all z,y. Thus ¢ = 0 and < b,Tx >= 0 for all . Since the range of T is

dense we get b =0. Hence H = [M + N|~.
Problem 452

Let X be an infinite dimensional Banach space with a Hamel basis {e;}.
Define f; : X — K by f;(3>_aje;) = a;. Show that f; cannot be continuous for
every 4.

Let x = Zanein where €] s are distinct and a,, > 0 are such that the
n
We can write = as a finite sum Z bje;.
JEF
where [ is a finite set. Suppose 4, ¢ F. Then f; is not continuous. This is

series converges, e.g. a, = m
in
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T T
because fzp(z ane;,) = ap if r > p7Zanein — x as r — oo but f; (x) =

n=1 n=1

fip (Z bj@j) =0.

jeF
Problem 453

Show that any separable metric space is isometric to a subset of C[0,1]. (
Assume Banach - Mazur Theorem)

Let {z,} be dense in the metric space (X, d). Define f : X — [* by f(z) =
(d(z,zn)—d(y, z,)) where y € X is fixed. Since d(x,x,)—d(y,x,) < d(z,y) and
d(y,zy) — d(z,z,) < d(z,y) we see that f is a well-defined map into [*°. Now
1f(2) = f(2I = sup{ld(z, zn) — d(z,2n)| : n > 1}. Clearly |[f(z) = f(2)] <
d(z,2). If z,, — z then [|f(z) = f(2)|| > |d(z,2n,) — d(2,30,)| — d(,2).
Hence (X, d) is isometric to a separable subset of [*°. The closed subspace gen-
erated by the range of f is a separable Banach space. By Banach - Mazur
Theorem there is an isometric isomorphism from this Banach space into C10, 1].
The composition of these two isometries gives an isometry from X into C10, 1].

Problem 454

Show that sum of two closed subspaces of a Banach space need not be closed.
Show that if M and N are closed subspaces of a Banach space X with M NN =
{0} then M + N is closed if and only if inf{||lz —y|| : z € M,y € N, |jz|| =1 =
lyll} > 0.

For the first part we actually give an example in a Hilbert space: take

M = sp{ei,es, ...} and N = spler + Lea,e5 + Fxeq, ..., €2n-1 + sh€on, ...} in

X =07 Ifu, = degi. then w,, — u where u = Z 5re2i. We claim

=1
n

that w, € M + N for each n but v ¢ M + N. Since wu, = Z(%egi +

i=1
n

€2i-1) + Z(—l)egi,l we get u, € M+ N. If u € M + N then we can write
i=1

(oo}

Z €2 = Zalegl 1+ hm Zb(k (3re2i +e2i-1). Taking 2j —th coordinates
3 =1

on both 51des we get = o = hm b(k) 1L or hm b( ) = 1. Taking (25 — 1) — st

coordinates we get 0 = a; + khm bl( ) — a; +1. Thus a; = —1 for all ¢ which

oo
contradicts the fact that Z a;€s;_1 converges.
i=1
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We now prove the second part. Suppose M + N is closed. Define P : M +
N — N by P(m+n)=nform € M,n € N. This is a well-defined linear map
and it is continuous by Closed Graph Theorem. Let € M,y € N and ||z] =
1= |ly]l. Then 1 = |yl = [Pz — )| < [Pl ke — yll s0 o — yl| > Ty For the
converse part suppose M + N is not closed. Then, for each n, we can find z,, €
M,y, € N such that n ||z, — yn|l < ||ynl|. [ Otherwise there exists n such that
nllz —y| > ||ly| for all x € M and y € N which implies that if z; +y; — z with
{z;} € M, {y;} € N then |ly; —uill <nl(z; +y;) — (@ +w)l| —»0asj,l — o0
so {y;} converges to some y € N. Clearly z; - z—y =z (say) soz=x +y €
M + N. This means M + N is closed, contrary to our assumption]. We have

Yn L 3 _ Tn Yn _ Tn
‘ Toull ~ Tom ||H < 1/n. This implies that ’1 ‘fn . Toal ‘ ‘*uynn H <
z T ’ < 1/n. In other words, HH?“;—”H (1-1/n,1+1/n). Let ¢, =
T || — lznll I Tn T
‘ = Tuoq and un = g2y, We have || ey — ey ‘ < V”*‘ Teel ~ Toell ’
- 1/n+||xn||’”zn” . 1/n+‘1 - Hg:”) = 1/n+|1 — ta| < 2/n. This

proves that inf{|jz —y| : 2z € M,y € N,|jz|| =1=||y|} > 0.
Problem 455

Let C be a closed convex set in a Hilbert space H. For any x € H let Px
be the unique element of C such that ||z — Px|| < ||z — y|| for all y € C. Prove
that |[Pz — Py|| < ||z —y|| Vz,y € H. Also show that ||z||> — ||z — Pz|® is a
convex function on H.

We have ||z — Pz|| < ||z — (ty + (1 —t)Pz)|| if y € C and ¢ € [0, 1]. Hence
|z — Pz||® < ||z — Pz||> + 2 ||y — Px||* +2tRe < « — Pz, Px —y >. This gives
0<t|y— Pz|*+2Re <z — Pz, Px —y >. Hence Re < & — Pz, Pz —y >>0
for y € C . Hence Re < x — Px, Px — Py >> 0 for all z,y . Interchanging x
and y in we get Re <y — Py, Py — Px >> 0so Re < Py —y, Pv — Py >> 0.
Adding we get Re < x — Px + Py — y, Px — Py >> 0 which gives us Re <
& —y, Px— Py > — [Pz — Py||> > 0. Hence ||Pz — Py|* < ||z — y|||[Pz — Py|
or [Pz — Py|| < [lz —y|. Now let ¢(z) = [|z|* — ||« — Pa|*. Then ¢(z) =
sup{[lz|* = |z —y[* : y € C} = sup{2Re < @,y > — ||yl : y € C} and
convexity is obvious from this.

Problem 456
Let {z,}, {yn} be sequences in a normed linear space such that x,, = y, =1

for all n and ||, + yn|| — 2. Show that |t,z, + (1 —t,)yn| — 1 for any
{ta} € [0,1].

Without loss of generality we assume that {¢,} converges to some ¢ € [0, 1].

Since |||tnen + (1 — t0)ynll — [t2n + (1 = ynll| < 21|t, —¢| it suffices to con-
sider the case when t,, =t for all n. Let ¢,,(¢t) = |[txn + (1 — t)yn||. Then ¢, is
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convex. Also ¢,(0) =1 = ¢, (1) and ¢,(3) — 1. From these we can show that
(ﬁn()—>1f0r0§t <1:if0 <t < 3 then ¢,(3) < ag,(1)+(1—a)¢,(t) where
o is defined by 3 = a4 (1 — )t Thus lim inf ¢n( ) > 1 and since ¢,,(t) < 1 for
all n we get lim ¢, (t) = 1. For £ <t <1 the result follows by interchanging z,
and y, and replacing ¢t by 1 — t

Another proof: there exists ¥ € X* such that ||| = 1 and z
|| £252=||. Since |2} (zn)| < 1 and |2} (yn)| < 1 it follows that @}, (z,,) — 1 and
xi(yn) — 1. Hence % (tnzn + (1 — tn)yn) > ta(l —e) + (1 — ¢,)(1 — &) for
n sufficiently large. Since @} (tnxn + (1 — tn)yn) < [[tnTn + (1 — &n)yn| we get
liminf ||t,z, + (1 —tp)yn] > 1 — €.

(xn;ryn) —

Problem 457

Let u be a unit vector in R™ and A be a Lebesgue measurable subset of R"
such that for each © € R™ we have m(L;) = 0 where L, = {t e R: x +tu € A}.
Show that m,(A) = 0 (m,, is Lebesgue measure on R™ and m is Lebesgue
measure on R).

Let T be an isometric isomorphism of R” such that Tu = ey. If t5,t3,...,t, €
R™™! then {t € R : (¢, t2,t3,...,tn) €T(A)} ={t e R:tTu+ (0,ta,t3,....t,) €
T(A)} = {t € R: tu+T710,ta,t3,...,tn) € A}. The hypothesis with z =
T71(0,ta,t3, ..., t,) shows m{t € R : (t,ta,t3,...,tn) € T(A)} = 0. Since
ta,t3,...,t, are arbitrary Fubini’s Theorem shows that m,(T(A)) = 0. But
mn(T(A)) = det(T)m,(A) and det(T") # 0 so m,(A) = 0.

Problem 458

Let A be a subset of a Banach space X and 3 € (0,1) Suppose we have the
following property: for any x € A and any § > 0 there exists y € X such that
lly — z|| <& and B(y, B |ly — z||) N A = 0. Show that A is a nowhere dense set
and it has Lebesgue measure of measure 0 when X = R"™.

Remark: a set A with the property stated above is called ’porous’.

If possible let A have an interior point z. Let {z,} C A and x,, — . By hy-
pothesis there exists y,, such that ||y, — .|| < 1/n and B(yn, 8 ||yn — za||)NA =
0. Let B(z,p) C A. Tt |12 — yall < Bllgm — all then [z — o] < 8 lyn — 2l +
|9 — @n||+]|zn — x||. Hence if we choose n so large that 8 ||y, — zn||+||yn — a||+
|z, — || < p we get |z—z| < p and 2 € B(z,p) € A. It follows that
B(Yn, Blyn — nl|) € A. This is clearly a contradiction to B(yn, B |yn — zn|) N
A = (. Hence A is nowhere dense. Now suppose X = R" and m,(A) > 0.

There exists z € A such that % — lasr — 0. Choose r > 0 so

small that m, (B(z,t) N A) > (1 — (2)")ym(B(x,t)) if 0 < t < r. Choose y € X
such that |ly —z| < r/2 and B(y,8|ly—=z|) N A = §. We now have (1 —
(5)")ma(B(z,2ly = «l))) < ma(AN B(z,2 ]|y —«|)). Since Bly, Blly — ) N

220



A = 0 we get (1=(5)")mn(B(x,2 ||y — z[])) < ma(B(z,2|ly — z|)\B(y. Blly — ).

Noting that B(y, 8 ||y — z||) C B(z,2||y — «||) we can compute m,, (B(z,2 ||y — z|)\B(y, B |ly — z||))
in terms of the measure a of the open ball of radius 1 around 0: m,,(B(z,2 ||y — z|)\B(y, 8 |ly — z||)) =
2" |ly — 2" a—B" ||y — @||" o. Finally we have (1—(5)")m,,(B(z,2 |y — z|)) =

(1- (g)”)2" ly — "o < 2™y — z||" @ — 8" |ly — z||" a. This is a contradic-

tion.

Problem 459

Do there exists two dense subspaces of a Hilbert space whose intersection is

{037
Yes. Step functions and C°° functions with compact support in L?(R).
Problem 460

Let X be a Banach space and K be a bounded closed convex set in X.
If every continuous map from K into itself has a fixed point show that K is
compact.

Suppose not. Then there exists § > 0 such there is no finite § - net for K.
[ i.e. a finite number of balls of radius cannot cover K|. Let o € K. There
exists 1 € K such that d(z1, span{zo}) > /2. [ Suppose d(z, span{zo}) < §/2
for all 2 € K. Since K is bounded we get a bounded set S C span{zo} such
that d(z, span{zo}) < §/2. S can be covered by a finite number of balls of
radius §/2 and hence K itself has a ¢ -net]. Having chosen z; for 0 < i < k
choose z11 in K such that d(xp41, span{xo,z1,...,x}) > §/2 . [Existence
Zrp4+1 can be proved as above since bounded subsets of span{zg,z,..., 2}
are totally bounded]. By induction we get a sequence {z,} C K such that
d(xg41, span{xo, z1,...,xk}) > §/2 for all k. In view of the convexity of K each
of the segments [x;,x;11] is contained in K. There exists a homeomorphism

¢: L= U[:ci,:cHl] — [0,00). [ The segments [z;,x;11] (which are disjoint
i=0

except for the fact that adjacent segments have one point in common) can be
mapped homeomorphically to [i,i+1] via tx;+(1—t)x; 41 — ti+(1—t)(i+1) and
these can be combined to get ¢]. Note that L C K. We claim that L is closed.
Suppose {y,} C L and y,, — y. By going to a subsequence we may suppose ¥y, =
tnxi, + (1 — tn)x;, +1 with {¢,} converging to some ¢t. In view of boundedness
of K it follows that z, = tz;, + (1 — t)x;,+1 also converges to y. Since finite
unions of [x;,z;4+1] are closed we may suppose i, T co. Choose n so large that
2 = znsall < (6/2)(1=1). Then ||, + @i, 1 = {rbing, + @i Y| <
d/2. But then the distance from x;,, 41 and span{z; : j < inq41 + 1} is less
than §/2 which is a contradiction.

Now define g : L — L by g(z) = ¢ '(¢(x) + 1) and define f : K — K
by f(x) = g o0 where 6 is a continuous map from K into L which is identity
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on L. The existence of 6 can be proved using Tietze Extension Theorem. |
A continuous map from a closed subset of a metric space into [0,00) can be
extended to a continuous map from the metric space into the same interval:
just take the extension ¢ into R given by Tietze Theorem and consider |£|]. If
f(z) = x then x belongs to the range of g which if L and hence 6(z) = x. Thus
g(x) = x. But this is absurd since ¢(g(x)) = ¢(x) + 1 # ¢(x). This completes
the proof.

Problem 461

Let X be a Banach space and K be a closed convex set in X. If every
continuous map from K into itself has a fixed point show that K is compact.
[ Boundedness of K has been dropped from previous problem)]

Assume, w.l.o.g. that 0 € K. Assume that K is not compact. Suppose
there exists a closed bounded convex set K; C K which is not compact. In
this case K contains a homeomorphic copy of [0,00) and we can proceed as in
above problem to complete the proof. In the contrary case {z € K : ||z|| < 1} is
necessarily compact. Since K is unbounded, convex and contains 0 we can find
{z,} C K such that ||z,|| = n for all n. Compactness of {x € K : |jz| < 1}
ensures that there is a subsequence {n;} of {1,2,...} and y such that %J — .
Claim: [0,00)y € K. Let t € [0,00). Since x,, and 0 € K and K is convex,
t2 ¢ K for all j sufficiently large. Hence ty € K and the claim is proved.

n;
Now we can repeat the proof of previous problem again.

Problem 462

Show that Let X be a Banach space and K be a closed convex set in X.
If every continuous map from K into itself has a fixed point show that K is
compact.

[ Boundedness of K has been dropped from previous problem)]

Assume, w.l.o.g. that 0 € K. Assume that K is not compact. Suppose
there exists a closed bounded convex set K; C K which is not compact. In
this case K; contains a homeomorphic copy of [0, 00) and we can proceed as in
above problem to complete the proof. In the contrary case {z € K : ||z|| < 1} is
necessarily compact. Since K is unbounded, convex and contains 0 we can find
{zn} C K such that ||z,|| = n for all n. Compactness of {x € K : ||z| < 1}
ensures that there is a subsequence {n;} of {1,2,...} and y such that % — .
Claim: [0,00)y € K. Let t € [0,00). Since z,, and 0 € K and K is convex,

tmi_" € K for all j sufficiently large. Hence ty € K and the claim is proved.

nj
Now we can repeat the proof of previous problem again.

Problem 463
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Show that {z € R™: ||z|| < 1} is not homeomorphic to {z € R™ : ||z|| = 1}.

Remark: if X is an infinite dimensional Banach space that X, {z € X : ||z| <
1} and {z € X : ||z|| = 1} are all homeomorphic( and they are homeomorphic
to R*)! [cf. Bessaga and Pelczynski, Selected Topics in Infinite Dimensional
Topology]

Suppose ¢ : {zx € R" : ||z|| < 1} — {& € R™ : ||z|| = 1} is a homeomorphism.
Consider ¢~ (¢(—x)). This is a continuous map of {z € R” : ||lz|| < 1} into
itself. By Brouwer’s Fixed Point Theorem there exists z such that ¢~ (¢(—z)) =
x. But then ¢(z) = ¢(—z) contradicting the fact that ¢ is a homeomorphism.

Problem 464

Let C be a closed convex set in a Banach space X. If f : C — C is a
continuous map such that f(C) is compact show that f has a fixed point.

We use Schauder’s Fixed Point Theorem and the fact that the closed convex
hull of a compact set is compact. [ My notes on Fixed Point Theorems and
Theorem 3.25 of Rudin;s Functional Analysis]. Let K be the closed convex hull
of f(C). Then K is a compact convex set and K C C. Also f(K) C f(C) C K.
By schauder’s theorem f has a fixed point in K, hence in C.

Problem 465

Let C be a closed convex bounded set in a Banach space X. Let f: C — C
be a map such that [|f(z) — f(y)| < |lz —yl for all z,y € C. Prove that
inf{||f(z) —z|| :z € C} =0.

Remark: if C' is also compact then we can conclude that f has a fixed point.

Let fn(z) = Lag+ (1—1)f(x) where zy € C is fixed. Then f, maps C into
itself and || f,,(x) — fu(y)| < (1 = L) |lz — y|. This implies that f,(z,) = zn

for some z, € C. [ Fix n and denote by f,(Lk) the k- fold iteration of f,
with itself. For j < k, é’”(zo)—féﬂ(xo)u < (1-1y Hf,&’“‘”(xo)—xo
and ’f,sk_j)(mo)f:roH < 2sup{||z|| : z € C} so {fﬁk)(xo)}k is Cauchy. Its
limit z,, satisfies fn(x,) = x,). Thus%xo + (1 - %)f(a:n) = z, for all n.

Now ||f(zn) — zn|| = ||f(xn) — %xo —(1- %)f(xn)H < w + w Since
{f(zn} € C and C is bounded it follows that || f(x,) — z,| — 0.

Problem 466
In previous problem show that f need not have a fixed point.

Let C = {f € C[0,1] : f(0) = 0,f(1) = 1 and £([0,1]) C [0,1]}. Let

F : C — C be defined by F(f)(x) = zf(x). Then ||F(f) — F(g)|| < ||f — gl if
f#£g [U|F(f)—F(g)| = |lf — g|l then there exists xo such that ||f — g|| =
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I1E(f) = F(g)ll = lzof(z0) = zog(zo)| < |f(20) = g(z0)| < [If — gl so we must
have equality throughout. Hence zo = 1 and ||f — g|| = |zof(z0) — zog(xo)| =
[1—-1] =0]. If f € C and F(f) = f then zf(z) = f(x) for all z. But then
f(z) =0 for x < 1 making f discontinuous at 1.

Problem 467

Let K be a compact convex set in a Banach space having at least two points.
Show that K has a non-diametral point, i.e., there exists x € K such that
sup{|lz —y|| : y € K} < d where d is the diameter of K.

Suppose sup{||z —y|| : y € K} < d for all x € K. Let 21 € K. There exists
xo € K such that ||x; — 22]| = d. Having found x4, o, ...,2, we can choose
Tni1 € K such that ||z, — &F22teten || — d We get a contradiction by
showing that the sequence {z,} in K has no convergent subsequence. We have

d= HZL’n+1 n
d which implies ||, 11 — 24| = d for ¢ < n. This is true for each n 50 |z — x; || =
d whenever i # j.

Problem 468
Let X be a separable Banach space. Show that there exists a compact set
K such that ||z|| =1 for all z € K and X is the closed subspace spanned by K.

Let {z,} be dense in X. We may suppose x, 75 0 for each n Let M

span{z1, 3, ...,zn}. Consider the sequence {17y, 177 + 47 HMH + 3y +

322>} Call this sequence {yn}. It is clear that y, — y = Z CEmE
n=1

Let zp = q2p and 2 = . Then z, — 2z Let K = {z} U{z1,22,..}.

Then K is a compact set each of whose elements has norm 1. Clearly, M,, C
span{yi,ya, .., Yn} = span{zi, 22, .., 2, }. Now X C [U M)~ C [span(K)]~ and

n
hence X is the closed subspace spanned by K

Problem 469

Prove or disprove the following: if u,,, i are probability measures on a com-
pact Hausdorft space {2 such that p, 2 4 then there exists a finite positive
measure v on ) such that sup{y,,(E) :n > 1} — 0 as v(E) — 0.

Remark: if we assume that {y,,} converges weakly in C*(f2), i.e. ®(u,,) —
O(p) VO € C**(Q) then there does exist v with above property. [ Theorem
13.43 of Banach Space Theory by Fabian et al].

False: let Q = [0, 1], u,, = 61/n, 0 = . Since 3 v{5} < co we get v{5} — 0
as j — oco. However sup{,un{%} :n > 1} =1 for each j.
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Problem 470

Prove or disprove: if  is a compact Hausdorff space, {f}U{f,} C C(Q) and
{P,} is a sequence of Borel probability measures on Q such that [ f,dp — [ fdu
for every Borel probability measure 1 on Q and [ fdP, — [ fdP for every
f€C(Q) then [ f,dP, — [ fdP.

Remark: if we assume that {P,} converges weakly in C*(f2), i.e. ®(P,) —
®(P) V® € C**(Q) then it is true that [ f,dP, — [ fdP. [ Theorem 13.43 of
Banach Space Theory by Fabian et al].
nefor0<z<1/n
False: let Q@ = [0,1], P/, = 0,0, P = 6o, f(z) = 0and fp(z) = n(2 —x) for 1I/n <z <2/n .

Ofor2/n<ax<1
Problem 471

Let © be a compact Hausdorff space and = € 2. Show that there is a
countable base of neighbourhoods of z if and only if {z} is a G set.

If {U,} is a countable base of neighbourhoods of x then {z} = ﬂ U, is a
n

Gs. Conversely, suppose {z} = mU" with each U,, open. There exists open
sets V,, such that x € V,, C V,, C Uy. Let W,, = Vi N VaN...NV,. Each W, is a
neighbourhood of z. Let U be any neighbourhood of . If U does not contain any

W,, then there exist points z,, in W,,\U,n = 1,2, .... The sets WH\U,n =12,..
are decreasing, compact and non-empty. By compactness of €2, m{VI;n\U }is

non-empty. However [(\{W,\U} C ([{Va\U} € ({U\U} = {z}\U = 0.

Hence every neighborhood U of z contains one of the sets {I,,}.
Problem 472

Let X and Y be Banach spaces and T': X — Y be a bounded linear map.
Show that 7" is compact if and only if there is a sequence {z}} C X* such that
[Tz < supf|a7, ()| : n > 1} and [[27]] — 0.

Suppose {xf} C X* ||Tz| < sup{|z:(z)| : n > 1} and ||z}| — 0. Let
Q = {0} U{z} : n > 1}. With the metric from X* this set is a compact
metric space. Let {z;} be a sequence in the closed unit ball of X. Define
a sequence {f;} in C(Q) by f;i(z}) = z}(z;) and f;(0) = 0. It is triv-
ial to check that this sequence is uniformly bounded and equicontinuous on
2. Hence there is a subsequence {f;} converging uniformly on € to some
f € C(Q). Hence sup{|fj, (=) — fj.(z})| : m > 1} — 0asn,r — co. This means
sup{le(@5,) — w5 (25,)] i m = 1}. But then [|T(z;,) — Tw;,)|| < sup{lay (@, — a5, :

225



n > 1} — 0 proving that {T(x,)} has a convergent subsequence. For the con-
verse let T' be compact and A = {T*(y*) : |ly*|| < 1}. Since T* is compact too,
A is relatively compact, hence totally bounded. Claim: there exists {z%} C X*
such that [|z}| — 0 and A C co{z} : n > 1}. Once this claim is established we
get |7z = sup{ly (T : lly*]| < 1} = sup{|(T"y") (@) : [ly”]| < 1}

= sup{|z*(z)] : z* € A} < sup{|x;§($)| : n > 1} thereby completing the
proof. Let A; = A and B; be a Z net for A (i e B is a finite subset of A
such that every point of A is at distance less than + from some member of By).
Let A2 = (A1 — By) N {z* : ||z* || < 1}. Having deﬁned A;,B;for 1 <i<m
let Apr1 = (A — B) N {z™ @ Jjlz*|| < 4m} and B,,;11 be a 4,"1“ net for
Apms1- Let {af} be obtained by first listing all the elements of 2By, then all
the elements of 22B,,.... Since B, C A, C {z* : |lz*|| < ==} for n > 2
we get ||z]| — 0. Now let 2* € A. By definition of B there exists z € By
such that ||z* — 2} < i. Hence uj = * — 2} € Ay and z* = uj + 2. Now
there exists z; € By such that ||z — z{|| < &. Now u} = 2z} — 25 € Ay and
2 = us + 2z5. Thus x* = u] + 27 = ul + u3 + 25. Proceeding like this we get
¥ =ul+ub

Hence z* = Z(Z’“ui)/?k By the definition of {z}} it is clear that this ( norm
k=1

convergent) sum belongs to the closed convex hull of {z} : n > 1}. This proves

the claim.

Problem 473

Let P, Py, Ps, ... be Borel probability measures on R such that P,((a,b)) —
P((a,b)) whenever —co < a < b < co. Show that P, — P.

Let ¢ > 0 and choose a positive number A such that P((—=A,A)) > 1 —e.
There exists ng such that P,((—A,A)) > 1—¢ for n > ng. Now P,((—00,al]) =
P,((—o0, —A]) + Po((—A,a]) < e+ Py((—A,d]) < e+ P((—Aya +6)) —

e+ P((—A,a+9))
< e+ P((—o00,a+9)) so limsup P, ((—o0,a]) < e+ P((—oo,a + d)). Since

0 > 0 is arbitrary we get limsup P, (( 00 a]) < e+ P((—00,a]). On the other
hand P,((—o0,a]) > P,((—A,a]) > P.((—A,a — §)) — P((—A,a —9)) >
P((—o00,a—0))—e. Letting 6 — 0 (and then e — 0) we get lim inf P, ((—oo, al) >
P((—00,a)). It follows that P,((—o0,a]) — P((—00,a]) whenever p{a} = 0.

Problem 474

In Problem 473 above can we conclude that P, (E) — P(E) for every Borel
set B7

No. Let {X,,} be ii.d. random variable taking values 0 and 1 with proba—

bility § each and S, = % By Central Limit Theorem S, % Y
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where Y has standard normal distribution. Let E = R\{+%2~ a /2 \F 0 <k <
n,n > 1}. Denoting the distributions of S, and Y by P, and P respectively

we see that the hypothesis of previous problem is satisfied ( because any open
interval (a,b) is a continuity interval for P) but P(E) =1 # 0 =lim P, (E).

Problem 475

Let T,, be a bounded operator on C[0,1] for each n. Suppose T,,f > 0
whenever f > 0,7,1 — 1,7,z — z and T,z> — 22 in the norm. Show that
T.f — f for all f € C[0,1].

[ This result is due to Korovkin]

Fix ¢ € [0,1] and € > 0. Let p be a polynomial such that ||p — fll, < e/4.
Let m and M be the minimum and maximum of p” on [0,1]. Let ¢,(z) =
1) o 031 (6) =y (0) — plt) + o 09/ ()4 MU=, By Talor'
formula we have ¢; < p < ¢y on [0,1]. Note that T,¢;, — (b 1 = 1,2 by
hypothesis. Since ¢;(z) — /4 < f(x) < ¢o(z) + /4 for every x we have
Tpéy — (/)Thl < Tpf < Tpdy + (£/4)T1. Note that T, — (¢/4)T1 —

— (¢/4) and Ty + (¢/4)T,1 — ¢y + (/4). If § > 0 is sufficiently small,
then |¢y — ¢1| <e/donI=[t—3d,t+0]. Hence ¢, (z) — (¢/4) > p(x) — (¢/2) >
f(x) — (32/4) and, similarly, ¢, + (¢/4) < f(z) + ¢5 + (3/4). It follows that
f(x) = (3e/4) < T f(z) < f(z) + (3¢/4) for all x € I for n sufficiently large. It
is now clear from compactness of [0,1] that T}, f — f uniformly on [0, 1].

Problem 476

Let K be a subset of a separable Banach space X such that {z}} C X* and
x}(x) — 0 for all x € X imply 2} () — 0 uniformly for x € K. Show that K is
relatively compact and conversely.

Suppose not. Then 3 § > 0 such that there is no § - net for K. We can
construct a sequence {x,} in K such that d(x,q1,span{zy,xa,....,zn}) > §/2
for all n. Such a sequence was constructed in Problem 460 above. There exists

x) such that ||£E I = 1,2k (x,) > /2 and z}(zx) = 0 for 1 < k < n—1.
[ Define 7 Zaixi) = apo, where o, = - xk is well
=1 sup{|an|: Zaizi <1}

=1
defined on span{xi,xa,...,x,}; it is easy to see that ||z%] = 1 and |a,| < 6,
hence z}(x,) > 6/2. Extend x} using Hahn-Banach Theorem]. Since the
closed unit ball of X* is weak* compact metric (by separability of X) there is a
subsequence {z7, } of {z};} converging to some z*. Since z7,(zx) =0 for k <n
we get z*(xx) = 0 for all k. Thus (z;,, —2*)(z) — 0 as j — oo for each z but
the convergence is not uniform on K because (7, ny — T ) (@n,) = a7, (Tn;) > /2
for all j. The converse is easy: by Uniform Boundedness Pr1n01ple {l|zx||} is
bounded. Since K is totally bounded it is easily seen that z} () — 0 uniformly
forz € K.
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Problem 477

Let p be a finite positive (non-zero) measure on a compact abelian topo-
logical group G such that p* p = p. Show that p is a Haar measure. What
happens if G is replaced by R?

First note that (u(G))? = p(G) so p is a probability measure. Let f be
a non-negative continuous function and g(z) = [ f(yz)du(y). Then g(z) =
[ flya)d(p+ p)(y) = [ [ flyze)du(2)dply) = [g(yz)du(y). Let S = {z €
G : g(z) = sup{g(z) : z € G}. Let z € S. Then g(z) = [g(yz)du(y) <
sup{g(z) : z € G} = g(z) so u(S) = 1. Since p has full support and g is
continuous it follows that g is a constant. Thus [ f(yz)du(y) = [ f(ye)du(y)
so [ fdu, = [ fdu. This holds for all non-negative continuous functions f
hence for all continuous function f and it follows that g, = p. This holds
for all x and we are done. If G is replaced by R then necessarily p = do:
[ e du(z) = ([ edu(x))? so [e**du(z) = 0 or 1 for each t. By continuity
we get [edu(z) =1 = [eddy(z) for all ¢ proving that u = &o.

Problem 478

Prove or disprove:
oo

a) there exist non-zero sequences {an }nez, {bn fnez such that Z lan| <

o0 o0 e
00, Z |br| < o0 and Z Am—nby, = 0 for all m € Z
n=—oco n=—o00
o0
b) there exists a non-zero sequence {a, }nez such that Z lan| < oo and
n=—oo

Z Ay = 0 for all m € Z

n—=—oo

a) True. Let f and g be smooth functions : R — R with disjoint supports con-
tained in (0,27). Since f’ and g’ are of bounded variation we have |(f') (n)| <

£ and |(¢") (n)] < & for some C < oo for n # 0. This gives ’f(n)‘ < £ and

[n] In|
oo

|§(n)| < & for n # 0. It follows that Z |an| < oo and Z |b| < 0o where

an = f(n) and b, = g(n). Let ¢, = Z Am—nbn. Then Z |en| < oo and
a Fubini argument shows that Z cpei™ = ( Z ane™)( Z b,ei"®) =
f(z)g(x) =0 for all x. [ We have used the fact that the Fourier series of a dif-
ferentiable function converges to the function at each point]. From uniqueness
of Fourier coefficients it follows that ¢,, = 0 for all n.
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b) False. With f(z) = Z a,e™® we would have f2 = 0 which implies
n=—oo
a, = 0 for all n.

Next few problems are selected from Davidson and Donsig’s book on Real
Analysis and Applications.
Problem 479

Let M and N be closed subspaces of a real Banach space X such that
M N N = {0}. Prove that M + N is closed if and only if inf{||lz —y| : = €
M,y €N, |zl =1 = [ly[[} > 0.

Suppose M + N is closed and P : M + N — M be the projection map.
Closed Graph Theorem shows that P is continuous. If ||z, — y, || — 0 with z,, €
M,yn, € N, ||zn]l = 1 = ||yn]| then ||P(zn — yn)|| — 0. But Pz, — yn) = xn
and {z,} does not converge to 0. Conversely, suppose inf{||x —y|| : 2 € M,y €
N,||z|l =1 = |ly||} > 0. Suppose x,, € M,y, € N for all n and z,, + y, — =.

Let a, = ||zn|l,bn = llynll, un = ainxn,vn = ﬁyn We have a,u, + bpv, — 2.

Suppose ay, = [[(an, by)|| — co. Then t,up, +s,v, — 0 where t,, = o= and s, =
n

bn

. Since u, and v, are unit vectors we get |[t,| — [sn|| < [[tntn + spvn| — 0.
Since t2 + s2 = 1 it follows that, through a subsequence, t,, — t,s, — s with
s = *t(= :I:%) Now |[tun, + svn|| < [tntn + S|l + |tn — | + |sn —s| — 0
(all these limits are along a subsequence). But then ||u, £ v,| — 0 and the
hypothesis shows that ||u,, £ v,| > §. Conclusion: «,, must be bounded. Going
to a subsequence we may suppose a, — a and b, — b for some a,b. Since
anly, + bpv, — z we get au, + bv, — z. If @ = 0 then z = lim(z, + yn) =
limy, € N C M + N. Similarly if b = 0 then z € M C M + N. So assume
that a and b are non-zero. If {u,} is Cauchy (hence convergent) so is {v,}
and we get z € M + N. If not there exists ¢ > 0 and {n;},{m;} T co such

U j —Um ; Un ; —VUm
J o = J
) %j |

that H“nj —uij > ¢ for all j. Let w; = |

T
N
U ; —0M ||

tnj —Um,
|, — wm, || P = |vn, = Um,||- Then arjw; + bp;zj — 0. Since {r;} and {p;}
have convergent subsequences, say with limits r and p) we get arw; +bpz; — 0.
But then ||ar| — |bp|| < ||arw; + bpz;|| — 0 so ar = +bp. This gives w;+z; — 0
which contradicts the hypothesis unless ar = bp = 0 which implies r = p = 0.
But r; > € so r > €. This finishes the proof.

Problem 480
Show that AI — T is invertible if A ¢ {0,1} and T? = T'; compute its inverse
explicitly.

[ T may be a bounded operator, in which case the inverse is also a bounded
operator) or just a linear idempotent map]
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The inverse is )\I—i— O )T To guess this write (A\[—T)~t = A~! Z I =

I+ i LT

n=1

Problem 481

Let X be a normed linear space. Show that X is a complete if and only if
the intersection of any decreasing sequence of closed balls is non-empty.

Remark: the proof below can be adopted to show that a metric space (X, d)
is complete if and only if the intersection of any decreasing sequence of closed
balls with radii converging to 0 is non-empty. [ Cantor’s Intersection Theorem
gives one part. See also problem 490].

Suppose the intersection of any decreasing sequence of closed balls is non-
empty. Let {z,,} be Cauchy. Let Hxnk — Ty H < 2% with ng T and rp = %%1
Then the closed balls with centers at x,,, radius r, are decreasing and if x is
in their intersection then x,, — x which implies z,, — . Hence X is complete.
Conversely let X be complete and let {B(z,,7,)} be a decreasing sequence
of closed balls. Claim: {x,} is Cauchy. We have x,11 + m(xm-l —

anrl + m(xrwrl - n) - xn‘ S
rn, which says ||Tne1 — Zpll + Tna1 < 7 iee |1 — @nl| < 7 — Tog1. This
implies that {r,} is decreasing ( which is also obvious from the fact that the
diameters of B(x,,r,) are decreasing). Let 7, | r. Iteration of ||z,41 — 7, <
Trn — Tnt1 vields || Zpim — Znll < 7 — Tnem — 0 as n,m — oo so the Cauchy
sequence {z,} has a limit z. Now, letting m — oo in | Zp+m — Znl| < T —Tntm
we get |2 — x,|| < 7, —r < 7, so the intersection of the balls B(z,,,r,) contains
x. Note that the intersection of B(zy,,7,),n = 1,2, ... is precisely B(z,r).

T,) € B(wpi1,mni1) € B(zn,rn) 0

Problem 482
Given distinct real numbers {z1, z2,...,25} C [0,1], € > 0 and a continuous

function f on [0, 1] show that there is a polynomial p such that ||f —p||,, <€
and p(z;) = f(x;) for 1 <i <k.

[T

Let g;i(w) = 32— Then g; is a polynomial, g;(z;) = 1 and g;(z;) = 0 if
H(xi—%‘)
i
k
j#i. Let p= Z%‘Qi~ Then p(z;) = a;,1 <i < k. Also ||p||, < M max{|a;|:
i=1

1 <4 <k} where M depends only on {1, s, ..., 2 }. Now choose a polynomial
po such that || f —poll,, <e&/(1+ M). Let a; = f(x;) — po(w;),1 <i < k. Let
p correspond to this choice of als. Let p = pg + p. Then p(z;) = po(x;) + a; =
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fx:),1 < i< k. Also [lp— flloo < lpo = fllo + IPlloe < /(1 + M)+ Me/(1+
M) = ¢ since |a;| < /(1 4+ M) for each i.

Problem 483

o0
Show that Z ane™ is the Fourier series of a C™ periodic function if and

n=1

only if {n* f(n)} is bounded for each k.

Recall that
it f)| = |7
k > 2 is fixed and ‘ kf(n)‘ < (O with Cf independent of n. Then repeated
differentiation of the Fourier series of f shows that f € C(*=2),

f(n )‘ < ;, n#0if fis Ct. Also f®)(n) = (in)*f(n). Thus
)(n ’ and {n*f(n)} is bounded if f is C°°. Conversely suppose

Problem 484

Yy ™ [e%e}
Prove that sup{/%d:z: ry >0} = /%dm # /%dw
0 0 0
nm
Let a, = / %daz Note that sinz is alternately positive and negative

(n—1)m
n (0,7),(mw,27),.... Hence a, > 0 if n is odd, < 0 if n is even. Also Then
nm

nim

z+m
(n—1)7 (n—1)7
nm nm

n. [ Indeed |a,| = / wdx and |an,11| = / ‘?i£|d$ Let s, = Zaj
(n—1)m (n—1)m
If n is odd then s, = by + (b3 —b2) + ... + (by, — byy—1) Where b, = |a,|. It follows

that s, < by. If n is even then s, < s,_1 < b1. Thus s, < |a1]| = a; for all n.
nm ™

This means / Si%dx < / Si%dx for each n. Also the fact that a/,s alternate in

0 0
sign and a7 > 0 implies that s, > 0 for all n. If (n — 1) < y < nx with n then
y (n—1)7 Yy (n—1)m Tr

/Siﬂdxz /Mda:—i— / sinz g, < /Siﬂdxg/wdasifniseven.
xr xT xT xT xT

0 0 (n—1)m 0 0

U1 = / sin(@dm) g _ / i‘i:dz It follows that |a,+1] < |a,| for all

(n—1)m Y nm 7r

y
Ifnlsoddthen/q”””d / Si%dx—i— / Si%dxg /%dwﬁ/%dw

0 0 (n—1)7 0 0
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Y (n—L)7 nmw

In the first case /%dm > / Si%da: + / Si%dm =5, > 0 and in the

0 0 (n—1)7
y (n—1)m y (n—1)m
second case /%dm = / Si%dm + / Si%dx > / s”#dx = Sp_1 >
0 0 (n—1)m 0

T

Yy
0. We have proved that /Si‘””dx < /%dm for every y > 0 proving that
0

x

0
Y

Y T
sup{/ﬁ%dx cy >0} = /%daz Note: we have proved that /%dm >0
0 0

0
™ oo

for all y > 0. If /%dm = /%dz then as 4+ a3 + ... = 0. This is impossible

0 0
because as + as < 0,a4 + a5 < 0, ....

Problem 485

Let C be a closed convex set in a normed linear space X and let z € C.
Show that {y € X : x 4+ ty € C V¢ > 0} is independent of z € C.

Let 1,z € C and y be such that 1 +ty € C Vt > 0. We have x5 4+ ty =
lim [(1—21)zo+2 {21 +nty}]. Since z1+nty € C we get (1—2)ao+1{z1+nty} €
n—oo
C Vnso xq +ty € C.

Problem 486

Let C;,i = 1,2,3,4 be convex sets in R2. If any three of these have non-
empty intersection show that all four of them have non-empty intersection.
Prove that if any two of three convex sets in R? have non-empty intersection it
does not follow that all three of them have non-empty intersection. Generalize
to R™.

For the counter-example look at the coordinate axes and the line {(z.y) :
x+y =1}. Now let z; € ﬂ Cj. Let y; = x; —x4,1 <4 < 3. There three vectors
J#i
3
are linearly dependent. Let Z a;y; = 0 with not all of a1, as, az equal to 0. We

=1
4

have Zbimi = 0 where b; = a; for 1 <4 < 3 and by = —(a1 + a2 + as). Thus

i=1
4

Zbi = 0 and not all the b}s are 0. Partition {1,2,3,4} into two sets I and J
i=1
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by I = {i € {1,2,3,4} : b; > 0} and J = {i € {1,2,3,4} : b; < 0}. We have

Z |bi] x; = Z |bi] ;. Also Z |bi| = Z |b;] = ¢ (say). Writing ¢; for @ we

i€l icJ iel icJ

get Z |lei| x; = Z |ci| z;. The left side belongs to ﬂ C; and the right side to
iel ieJ jeJd

ﬂ C;. Hence Z |lei| x; = Z |ci| x; belongs to every C;. Generalization to R™

JeI iel icJ

is straightforward.

Problem 487
Give two closed convex sets in R? whose sum is not closed.

Ci={(z,y):x>0andy > 1},Cy = {(z,y) : # < Oand y > —1}. Since
(n,2) 4+ (=n, 2) — (0,0) we see that C; + Cs is not closed.

Problem 488
If f: R — R is convex and bounded above show that f is a constant.

Let 21 < 9. If f(z1) < f(x2) then, for n sufficiently large, we have xo =
az1 + (1 — a)n where a = % and f(z2) <af(x1)+ (1 —a)f(n) <af(x1)+
(1 —a)sup{f(t) : t € R}. Since %‘f(ml) — 00 as n — oo we get sup{f(t) :
t € R} = oco. If f(z2) < f(21) then 1 = a(—n) + (1 — a)zz where a = 22271
and f(z1) < af(—n)+ (1 —a)f(z2) < asup{f(t): t € R} + (1 —a)f(z2). Since
M — o0 as n — oo we sup{f(t) : t € R} = oo again. It follows
that if sup{f(¢) : t € R} < oo then f(z1) = f(z2) whenever z1 < x2.

Problem 489

Let f : R? — R? be convex in the first variable and continuous in the second
variable. Show that f is continuous.

Fix (a,b) € R2. Let € > 0. Choose r > 0 such that |f(z,b) — f(a,b)| < ¢ if
|z —a| < r. Choose s > Osuch that |f(a —r,y) — f(a —7,b)| <€ |f(a,y) — f(a,b)| <
e and |f(a+ry)— fla+rbd)| < eif ly—b < s. Now let |x —a|] < r and
ly —b] <'s. Write (z,y) as a(a —7,y) + (1 — a)(a+r,y) where o = ¢E =% We
have f(z,y) < af(a—ry)+ (1 -a)f(a+ry) <ale+ fla+rb)]+ (1 -a)e+
fla+r,0)]

<e+alf(a,b)+e]+ (1 —a)[f(a,b) +¢] = f(a,b) + 2e. On the other hand,
if a —r <z < athen (a,y) = Bla+r,y) + (1 - B)(z,y) where 8 = 4% and
fla,b) —e < fla,y) < Bfla+ry)+ (1= B)f(z,y) <Blfla+rb)+el+(1-
B)f(z,y)

< Blf(a,b) +2¢] + (1 = B) f(@,y) so f(z,y) > 125[(1 = B)f(a,b) — 26p] =

f(a,b) — 1255 Noting that 8 — 0 as x — a we see that liminf f(z,y) > f(a,b).
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For a <z < a+r we write (a,y) = v(a—r,y) + (1 —v)(x,y) and use a similar
argument.

Problem 490

Show that there exists a complete metric space (X,d) and a decreasing
sequence of closed balls in it whose intersection is empty.

[Solution from stackexchange.com]. Let X = N,d(n,m) =1+ |3 — o= | if
n # m, 0 if n = m. Let B, be the closed ball with center n + 1 and radius

1+ 5. Indeed, d(n+1,m) < 1+ 5t iff n+ 1 =mor 0 < |5 — 50| < 5t

iff m > n. Since any Cauchy sequence is a constant, the space is complete.

Problem 491

Let {z;} be linearly independent in a vector space V over K(= R or C).
Show that there is an inner product on V which makes {x;} an orthonormal
set.

Let A= {z;} U{y,} be a Hamel basis of V. Let X = L?(A), the space of all

functions f : A — K with Z |f(a)|2 < oo. X is a Hilbert space under the inner
a€cA
product < f,g >= Z f(a)[g(a)]~. Define a linear map ¢ : V' — X by defining

acA
¢(a) = d, for a € A and extending ¢ by linearity to all of V. Here d,(b) = 1

if b = a and 0 otherwise. Define < z,y >=< ¢(z), #(y) > for z,y € V. Then
< @i, >=< ¢(x3), p(x5) >=< 4,00, >=1if i =5, 0if i # j.

Problem 492

If A is an uncountable subset of R show that there exists a € R such that
AN (—o00,a) and AN (a,00) are both uncountable.

Suppose not. Then R = FU F where £ = {z € R: AN (—o0,x) is at most
countable} and F = {z € R : AN (z,00) is at most countable}. Since A is
uncountable the sets E and F' are disjoint. If we show that E and F are closed
we get a contradiction to the fact that R is connected. Suppose {z,} C E and

Zn — . Then AN (—o0,2) C U AN (—oc0,x,) so x € E. Hence E is closed.
n=1
Similarly, F' is closed.

Problem 493

Let A, s denote the annulus {z € C : r < |z| < s}. Show that Ao is not
conformally equivalent to A; .
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If there is a conformal equivalence f of Ay ; onto A; 2 then f extends to a
holomorphic function on U. Let f(0) = a. By open mapping theorem a € Aj o.
Let b € Ag1 with a = f(b). Let Vi and V5 be disjoint neighbourhoods of
0 and b respectively. Then f(V1) N f(V2) is a nonempty open set. Let z €
fV) N f(Va)\{a}. Then z = f(v1) = f(v2) for some v; € Vi,vy € Va. Also
vy # 0 since x # a. Thus v1,ve € Ap,;1 and vy # vy. This contradicts the fact
that f is injective.

Problem 494

Show that a countable subset A of a real normed linear space X is connected
if and only if it is a singleton.

Note that z* € X* implies 2*(A) is a connected countable subset of R,
hence a singleton set. say {c}. If ai,as € A then z*(a1),z*(a2) € {c} so
x*(a1) = z*(az2). This holds for all z* so a; = as.

Problem 495

Let A be an n x n complex matrix. Prove that if lima™A™ exists and is
non-zero then lima™\" exists for every eigen value A. If A has n distinct real
eigen values show that a = % for some eigen value .

There exists a matrix S such that B = SAS™! is upper triangular. Clearly,
lima™A™ exists and is non-zero iff lim a™ B™ exists and is non-zero. If this is
true then lima™\" exists each eigen value \ because the diagonal elements of
B are the eigen values of A. If A has n distinct real eigen values then there
exists a basis consisting of eigen vectors and lim a™A™ exists and is non-zero iff
lim a™\" exists and is non-zero each eigen value A. This implies that a = %

where A = max{p : p is an eigen value of A}.
Problem 496

If f € C([0,1]) show that lim (n + 1)/x"f(z)dx = f(1).

n—oo

0

1

If f(z) = Zakzk then (n+1)/x"f(z)dx = (n+1)2akﬁ — Zak =
k=0

k=0 b k=0
f(1) asn — oo. For the general case let ¢ > 0 and let p be a polynomial such that
1 1
|f(z) — p(z)| < € for all z. Then |(n + 1)/1:”f(x)dm —(n+ 1)/x”p(x)dz <
0 0

1
e(n+ 1)/Jc"dx =c¢ and |f(1) — p(1)] < e. Second proof: Let |f(z) — f(1)| <e
0
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1-5
for 1—0 <2 < 1. Then (n+1)/x"|f(x)|dm§ (n+1)(1=8)"fllo — 0and

0
1

(n+ 1)/x"f(x)dx—f(1) =(n+1) /Jc"[f(x) — f(D)]dz — f(1)(1 — §)™. Now
Zs

1-6 1
1

(n+1) | 2"[f(z) — f(D)]dz| <e(n+1) /x"d:c <eand f(1)(1—=6)" — 0 as
)

1-96 1
n — oQ.

Problem 497

Show that any linear map 7" on R™ with n > 1 has a two dimensional
invariant subspace.

If T has an eigen value A with Im A # 0 there there exists z € C™"\{0}
such that Tz = Ax. Let y and z be the vectors obtained by taking the real

T(%) T:E+(2Tw)7 —

5 € span{y, z} since A+ and i(A—\) are real. Similarly,
Tz € spam{y,z}. Hence span{y,z} is invariant. Suppose now that all eigen
values of T are real. Let Tx = Az where z # 0. Define S : R"/[z] — R"/[z]
by S(y + [z]) = Tz + [z]. [ Here [z] denotes the span of {z}]. Then S is a well
defined linear map on the n—1 dimensional space R™/[x] and it has an invariant
one dimensional subspace spanned by a vector z + [z]. [ Argue as before if there
is a complex eigen value. If there is a real eigen value then there is a real eigen
vector]. Now span{z,z} is invariant for T

and imaginary parts of the components of z. Then Ty =
Az+Az _ Aytiz)+A(y—iz)
= 2

Problem 498

Show that there is a continuous monotonic function f : (0,1) — R such that
n—1

1
/ |f(z)|dz = 0o and lim Z Lf(£) exists (and is finite).
A k

=1

n—1 n—1 n—1
Let f(z) = L — 2. We have Z%f(%): ln_ n 3y (Lo
k=1 k=1 k=1
n—1 n—1
11— 1 1 _
TRt =2 k2 k=0
k=1 k=1

Problem 499
Let ¢ be a complex number such that convergence of {ag+ai+...+an_1+ca,}

implies that of {ap + a1 + ... + an—1 + an }. Show that either ¢ =0 or Rec > %
Prove that the converse is also true.
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Let f(s Zan , g(s Zb s™ and h(s ch " where by =
cag, b, = ao—|—a1—|— - 1—|—can and Cn, —a0+a1+ +a,L 1 + a, for
|s|] < 1. Then (1 — s)h s-co—i—ch—cnls —ao—i-Zan = f(s

Also (1 —38)g(s) = f(s) — (1 —¢)(1 —_s)f(s). [ This can be seen by comparing

coefficients of s"]. Hence h(s) = () = 9(s) = g

This equa-

—s 1—(1—0)(1 s) cts—cs”
tion holds for |s| < 1 and hence for |s| < min{1, |1 C|} assumlng c#0,c#1
we see that ¢, = coefficient of s™ @( = g(cs)

which is 71)71 {bo (= - ) + by (1 Leyn=1 4 . +b,}. We have proved that ¢, =
GO 1) {bo (L=< C)” + b ()4 L+ by } for all n. Now let {a,} be any con-
vergent sequence of compleX numbers Then we can choose {a,} such that
bn = ay, for all n. It follows by hypothesis that {c,} converges. It follows that
{Hao(Eh) "+ o (L)1 + ..+ an}} converges whenever {an} does. A stan-

dard argument using Uniform Boundedness Principle shows that Z |

k 0
which means || < 1. Thus 1 + le)* — 2Rec < |ef® so Ree > 1. This proves
the direct part. For the converse let Rec > 5 Assume ¢ # 0. Then |1 °’ <1
and so {c,} = {2{bo(=2)" + by (<1)" 1 + ... + b, }} converges whenever {b,,}
converges. The case ¢ =0 is terlal

01|<OO

[ We have used the following theorem above: suppose {Z ak,nbi} converges
k=0

n
whenever {b,} does. Then sup Z |ak,n| < co. For a proof let X be the Banach
" k=0
space of all convergent sequences of complex numbers with the supremum norm.
m

Define T,,, : X — C by T,,{bn} = Zak,mbk for m = 1,2,.... Note that

k=0
Tn{bn} = Z|ak,m\ when by, = ﬁim‘ if k <m and agm #0,1if & <m and
k=0 ’
ag,m = 0,by = 0 for & > m. Since ||{b,}|| = 1 we see that ||T},,| > Z |k, m|-

k=0
Tt suffices, therefore to show that sup ||T},| < co. However the sequence {T},}

m
of bounded operators on X converges at each point {b,} of X and the result

follows by Uniform Boundedness Principle].
Problem 500

Let p(z) = ap + a1z + ... + ap2™ with each a; > 0. Let a and 8 be the
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minimum and maximum of the numbers aff_l ,0 < j <n—1. Show that every
J

zero z of p satisfies the inequalities % <lz| < é

First consider a polynomial q(z) = by + b1z + ... + b,2" with by > by >
e >b,>0. If g(z) =0 and |z| <1 then 0 =|(1—2)(bo + b1z + ... + b 2™)| =
|b0 + (b1 — bo)Z + (bg — b1)2’2 =+ ...+ (bn — bn_l)Zn — bn2n+1|

> by —{(bo—b1)+ (b1 —b2)+...+ (bp—1 —by) +bn} = 0 and this forces z to be
1. Since ¢(1) # 0 it follows there is no zero of ¢ in the closed unit disk. Now let
t > 0. Then p(%) = by + b1z + ... + b, 2™ with b; = %’ If ¢t > mjax% = 3 then

bo > by > ... > b, > 0. Thus p(%¥) = 0 implies |z| > 1. In other words every
zero ¢ of p satisfies |¢| > % This is true whenever ¢ > 3. Letting t — 5 we see
that (] > % for every zero ¢ of p. Similarly considering p(£) with 0 < ¢ < a we

see that |¢| < 1 for every zero ¢ of p.
Problem 501

Let f: R? — R be continuously differentiable with compact support. Show

that f(z + iy) 77//(5’” +1<ayz)f(4) dédn where ¢ = € +1in, &, n real.

= por
Let ¢(r,0) = f(z+7re??) and consider/ {% z55 9 p(r,0)dfdr. Ase — 0
0

S

2w
this converges to 2//(‘“ +i3,)1(0) dédn. By periodicity we get / %%de =0.
0

2(¢—2)
Hence _,//7( a’g(lcdyz)f © d&dn
271' 27
= —5lim // ¢(r,0)dfdr = — 5= lim {0—¢(g,0)}db. But ¢(e,0) —
0

f(2) uniformly in 6 so we get —%//%d&l = f(z)

R2
Problem 502
Let A be a subset of R" such that every continuous real valued function on
it extends to a continuous function on A. Show that A is closed, but need not

be compact.

The second part follows by taking A = N in R. For the first part suppose
{an} € A,a, — a and a ¢ A. Let f(a,) = n,n = 1,2,.... Since {a,} has
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no lmit points in A Tietze Extension Theorem shows that there is a continuous
function on A which extends f. This extended functions obviously does not
extend to a continuous function on A.

Problem 503

Let A be a subset of C such that every continuous real valued function on
A can be approximated uniformly on A by polynomials in x and y. Show that
A is compact.

Remark: the converse of this follows immediately from Stone -Weirstrass
Theorem. See more remarks at the end of the solution below.

Let f : A — R be continuous. Let a € dA. Choose {a,,} C A such that a,, —
a. Let € > 0. Let p be a polynomial such that |f(z) — p(z)| < e Va € A. Since
{p(an)} is convergent, hence Cauchy there exists ng such that |p(a,) — p(am)| <
e VYn,m > ng. This gives |f(an) — f(am)| < 3¢ Yn,m > ng. Thus nlirréof(an)
exists. Call this limit f(a). If {b,} is another sequence in A converging to a
then {f(a1), f(b1), f (a2), f(b2),...} is Cauchy, hence convergent. This proves
that f(a) does not depend on the choice of {a,}. We have extended f to A.
We claim that f is continuous on A. Let {a,} and a € A and a, — a.
Since p is continuous at a there exists ¢ > 0 such that |p(z) —p(a)| < e if
|x — a| < 6. We can find b,,, b in A such that | f(a,) — f(bn)| < &,|f(a) — f(D)] <
e an — bu| < 8/2 and [b— a| < 6/2. Now [f(an) — F(@)] < |f(an) — £(bn)] +
£ (bn) = p(bn)| £ |p(bn) — p(b)| + |p(b) — F(D)[ + [ (b) — f(a)| < 5 for n so large
that |b, — b] < $ + |a, — a| +|a — b| < 8. This proves that f is continuous. We
have proved that any continuous function on A extends to a continuous function
on A. This implies that A is closed: suppose {a,} C A,a, — a ¢ A. Then
{an} is closed in A and Tietze Extension Theorem shows that there exists a
continuous function f on A such that f(a,) = n Vn. This function does not
extend to a continuous function on A. Thus, A is necessarily closed. Suppose
A is unbounded. Let f be a bounded continuous function on A. There exists a
polynomials p,,n = 1,2. .. such that | f(z) — p,(z)| < L Vz € A. It follows that
Pr is bounded on the unbounded set A and hence constant. Hence f = limp,,
is a constant too. Thus every continuous bounded function from A to R is a
constant. Let {a,} C A and |a,| — oo. Applying Tietze Theorem again we see
that there exists a bounded continuous function g on A (in fact on C) such that
g(a,) = % ¥n. This function is not constant.

Remarks: the proof shows that every continuous function on A extends to
a continuous function on A if and only if A is closed. Approximating f by
polynomials in z + ¢y is a different story altogether. % is continuous on 7" but it
cannot be approximated uniformly by polynomials in z. Mergelyan”s Theorem
says that if A is compact and C\ A is connected the every continuous function
on A can be approximated uniformly on A by polynomials in z.

Problem 504
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Show that every sequence of real numbers has a monotone subsequence.

Let {a,} CRand E = {k: a, < ax Vn > k}. [ Points of E are called the
peaks of {a,}]. If E is empty or finite there exists kg such that k > ko implies
an > ay for at least one n > k. We can choose an increasing subsequence of
{a,} inductively in this case. Suppose FE is an infinite set. Let ny < ng < ...
with each n; € E. Then a,,,, < a,; because n; € E and njy1 > n;. Hence
{an,,} is a decreasing subsequence of {a,, }.

Problem 505

If A is a convex set in R™ show that A is closed if and only if AN L is closed
for every straight line L in R™.

Using the results in my notes convexity.tex this problem is quite easy. Here
is a sketch: if A has an interior point (which may be assumed to be the origin)
then € 0A = the line L joining 0 and z intersects A in a line segment with x
as an end point. Since AN L is closed it follows that x € A. Hence A is closed.
If A has empty interior then there is a lower dimensional space in which the
previous argument works.

Problem 506.

Let X be a real normed linear space with dim X > 2. Let x # 0 and « > 0.
Show that there exists y € X with [jy|| = a and ||z +y||> = ||z|° + ||y||*.

Define f: S ={y € X : [ly| = a} =R by f(y) = [lz +y|* - =] — |ly]*.

f is continuous and S is connected. Indeed, if y; and yo € S,y1 # Y2, y1 # —Yo
tya+(1—t)y1

then t — ATt (=D is a path in S connecting y; and yo. If y1 = —yo
we can connect y; and ya to al\ziiiﬁ\l' It follows now that the range of f is
an interval. Now f(agir) = ([l + a)? — |z|* — a® = 2ajz|| > 0 whereas

f(—apg) = (lz|| — a)? = ||z]* = a2 = —2a||z|| < 0. We conclude that f must
vanish at some point y € S.

Problem 507 [Stability if linear independence]

Let {x1,z2,...,2n} be linearly independent elements of a normed linear
space X. Show that there exists € > 0 such that ||y; — z;|| < e for i =1,2,.., N
implies {y1,y2,-..,yn} is linearly independent.

Suppose this is false. Fix ¢ > 0. Choose vectors y1,ys,...,yny and scalars
N

€1,C2,...,cy not all 0 such that Zciyi =0and ||y; — 2] <efori=1,2,..,N.
i=1
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N

E CiZ;

i=1

N
< SZ |ci|. Denoting —“— by d; we get
i=1

Then

N
Z Ci(wi - yz)
i=1

N
< €. Note that Z |d;] = 1. If we let ¢ — 0 and use compactness of

i=1
N N

{(dy,da,...,dy) € RN : Z |d;| = 1} we get Ztimi = 0 for some (t1,ta,...,tN)
i=1 i=1

|eil
i=1
N

Z di.’lﬁi

i=1

N

with Z |t;| = 1. This contradicts the linear independence of {z1,za,...,zn}.
i=1

Problem 508

Let x1,x9,...,2Nn be unit vectors in a real normed linear space X such
N N
E Cilsg E Cilg
i=1 i=1
(2 — M) max |¢lfor all ¢1,cq,...,cN.

1<i<N

that < M max |¢]| for all ¢j,¢a,...,cn. Show that >
1<i<N

N
Define T : (R, ||||..) — X by T(c1,c2,...,cn) = chxl The hypothesis
i=1
says that ||T|| < M. Hence ||T*]] < M. It is easy to see that T* : X* —
(RN|III,) is given by T*z* = (z*(z1),2*(z2),....,2*(xn)). Let 1gya<>§v|ci| =

N
g CiZ;
i=1

> |ej| — X, s ; |z*(;)|. We claim that ; 2% (z;)] < M —
17] 17]

lcj|. Choose z* such that ||z*|| = 1 and z*(z;) = 1. Then

Y

N

i=1

N
1. Since T*(z*) = (x*(x1),2*(x2),....,2*(xn)) we have Z|x*(m1)| < M.

i=1

Combined with the fact that «*(x;) = 1 we get Z |z*(x;)| < M —1 as claimed.
i#]
N
oAl > e — ) (e N > |es| — _ o>
Now z;cw > el = max el ; [ @)l = les| = (M = 1) max || >
i= i#£]
(2- M)lrgniag\/m\ since 121ia§>§v|ci| = |eq].

Problem 509

If {an}, {bn} C R and a, cosnt + b, sinnt — 0 for all ¢ in (a,bd) for some
a < b show that a,, — 0 and b,, — 0.

[ See also Problem 510]
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We have to show that a2 +b2 — 0. Suppose not. Then %\/%Z;m"t —0

b

lan, cosnt+b sin nt|? dt —

along a subsequence and Dominated Convergence Theorem shows / aZ b2

a

b

" t+b, t 2 _
0 along a subsequence. Now /la o8 Zgilﬁ sinntl® gy _ a;jb%(bf + o(1)) +

a

2
(5% +0(1)) + 23162 o(1). Tt follows that ijQ boa y PrEns +b2 b4 — 0 along

2
2bn 2
az +b3
a subsequence, which is absurd.

Problem 510

If X is a real normed linear space, {z, }U{y,} C X and z,, cos nt+y,, sinnt —
0 for all ¢ in some interval (a,b) show that x,, — 0 and y,, — 0.

Remark: weak convergence of {z,} and {y,} is trivial from previous prob-
lem. What is asserted here is norm convergence.

We compute / |2* (2, cosnt 4 yp sinnt)|* dt. We get (z*(zn))? (552 +0(1)) +

(2 (yn))2 (552 + 0(1)) + 22* (z)2* (yn)o(1). Note that {z,,} and {y,} are norm
bounded (because they converge to 0 weakly). Since the above integral tends to 0
b

(by DCT), (2*(2,,))?+(2*(yn))? — 0. Now observe that / |2* (2, cos nt + yy sinnt)|* dt <

/||:rn cosnt + y, sinnt|® dt if |z*| < 1 and /||:rn cosnt + y, sinnt|® dt — 0

by DCT so (z*(z,))? + (2*(yn))? — 0 uniformly for ||z*|| < 1. This implies that
|z*(zy,)| — 0 uniformly for ||z*|| <1 and |z*(y,)| — 0 uniformly for ||z*|] <1
and this completes the proof.

Problem 511

Let X =1y and M = {{an} € X:0=a; = a3 =as =....}. Show that any
non-zero continuous linear functional on M has infinitely many norm preserving
extensions to X.

Let f be a non-zero continuous linear functional on M. By Hahn Banach
Theorem and the fact that (ll) = | there exists a non-zero element {c,}
oo

of lo such that f({a,}) = Zazcl Zagic%. Also ||f|l = sup|cn|. How-

i=1
§ a2;C24

i=1

ever |f({an})| =

IN

< [Han}suplean| so supen|

sup |cap,| which
n
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implies || f[| = SUP len| = SUP|C2n| Let g({an}) = Za%c?z + Zﬁ22+1a21+1
where {35, ,,} is an arbitrary bounded sequence w1th sup ‘ﬁ2n+1| = bup len]. Of

course, distinct {8,,}'s give distinct linear functionals g. We claim that each
one of these is a norm preserving extension of f. Of course, g extends f and

lgll < max{sup|czn|,sup [Ba, 41|} = sup |e2n| = [|f]|. This implies ||g[| = [ f]-
n n n

Problem 512

Let f: (0,1) — R be continuous and / z)dx = 0 for n = 0,1,2,....

Show that f(xz) =0 Vz € (0,1).

x

Let g(z) = /f(t)dt. Then/1 = /wn/f t)dtdz = m/ ft)dtlo—
0 0

0
1

/;: f(z)dx = —/f t)dt = 0 and g € C([01]). Hence g = 0 which implies

Joc(m):g'(x):()for0<x<l

Problem 513

Let f be a continuously differentiable function on [0, 1] with f(0) = f(1) = 0.
Show that [|f[l; < 1 [/l

Let fi(z) = f(z), fo(z) = = f(2), fs(z) = f(1 — x) and fi(z) = —f(1 — ).
Then ||fjll, = [[flls 1 < j < 4. Claim: fj(x) < ([[fl)zx for 0 <z < 1,1 <

j < 4. To see this observe that f;(x /f’ t)dt < (|| f'|| )z It follows that
[f(@)] < (||f’||001)93 and |f(1 — )| < (| f* IIOO)x so [f(2)] < (I f'lloc)(1 = 2). Hence
11l < 1 /min{x, 1—abdr =1 f]l

0

Problem 514

k=0

a) If f € C((0,1]) show that 3 1 f(%) — /f(m)dx
0
1

b) If f € C*([0,1]) show that if(%) — n/f(m)dcc N w
0

k=0
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¢) Give an example to show the conclusion of b) fails for some f € C([0,1]).

) B zif0<z<i ¢(2%>
Counter-example first: let ¢(x) = { - zifl<z2l and f(x Z
2" 2" oo Pk n—1 2" 2" i—1
Wehave Y f(£) =33 2E30) = S N ki) L = Z 9i—n+1 Z k=
k=0 k=0 j=0 §=0 k=0
2n
271 — 150 Zf(%) - 2”/f(x)dx = —1 whereas M =0.
k=0 4
a) is trivial.
n 1 n k/n
b > f(5)n [ farte = S (5(5)-n [ flo)is) = nZ
k=0 o k=0 (k=1)/n F=00 1)/,
f(z)}da
k/n k/n
0y [ /(€ =n> | G- € s
k=0k—1)/n k=0k=1)/n
k/n
nz L) f (%)dw Using uniform continuity of f’ and the fact that
k= °<k71>/n
" k/n
nz (% —xz)dz| < 1 we see that the first term above can be made
k=0 1) /n
n k/n
arbitrarily small by choosing n sufficiently large. Note also that n Z (%—
k=0k—1)/n
k/n
2)f dw—an ) [ dx—an (B — 3 [ £y =
(k=1)/n 0
S0)-1©)

Problem 515
Show that f : [a,b] — R is absolutely continuous if and only if given € > 0
there exists § > 0 such that for any finite disjoint collection of intervals {(a;, b;) :

> {fbi) = flai)}

i=1

k
1 <i <k} with Z(b" —a;) < § we have

i=1

<e.
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Consider those intervals (a;, b;) for which f(b;) — f(a;) > 0. Since the sum
of the lengths of these intervals is less than 6 we get > | f(b;) — f(a;)| < € where
the sum if taken over these intervals. Similar argument holds for intervals with

k
f(b;) — f(a;) < 0. Hence Z |f(b;) — f(a;j)| < 2e proving that f is absolutely
j=1
continuous.

Problem 516
Show that f : [a,b] — R is Lipschitz if and only if given £ > 0 there exists

0 > 0 such that for any finite collection of intervals {(a;,b;) : 1 < ¢ < k} with
k

k
Z(bi —a;) < ¢ we have Z [£(b;) — flai)] <e.

=1 i=1

Note that the intervals are not necessarily disjoint. Let € = 1 and choose §

correspondingly. Let a < b. Consider the points ty = a,t; = a + %, vyt =

a + g“—j and t,,+1 = b where m is defined by the inequalities ¢,, < b <
s R .

a+ % Considering the collection (¢;_1,t;), (tj-1,%;),...,(t-1,%;) ( the

interval (t;_1,t;) repeated n times) we get n|f(t;) — f(¢t;—1)] < 1. Hence
f(0) = f(a)] < D If(5) = f(t;-1)] < 2. Note that m < 22G=2) < m 41
50 [£(b) = f(a)] < 252,

Problem 517

Suppose f :[0,1] — R is continuous. If f’(z) = 0 for all irrational numbers
x show that f is a constant. What if f/'(z) =0 a.e.?

We prove that if f/ = 0 except on a countable set A then f is a constant.
Suppose f is not a constant. Then there exists o > 0 such that a = f(xg) —
f(0) # 0. Replacing f by —f if necessary we may assume that o > 0. Let
0<t<a For0<p< “Tj define gg(z) = f(z) — f(0) — Bz. Note that
gs(zo) = a — Bxg > t. Let {5 = sup{z € (0,70) : gs(z) < t}. Clearly,
0 < &5 < x0. We claim that gs(£3) = t. Assuming this for the moment consider
the map § € (O,min{“l_—;t, 1}) — £5. Call this map ¢. If ¢(3;) = #(B,) then
s, = &p, and gﬁl(fﬁl) — 98, (551) =95 (5[31) — 98, (552)

=t —t = 0 which gives f(5;) — f(0) — 52 = f(8;) — f(0) — B, which
implies 3, = B5. We get the desired contradiction by showing that §; must
be in the countable set A. Otherwise f'({3) = 0. However 0 < h < zg — {4

implies gg(£5 + ) >t = gp(£s) (by the claim) so M > 0 whereas

0= f"(§3) = B+g5(€p) s0 g5(€5) <0, a contradiction. It remains now to prove
the claim. If gg(£3) < t then gs(2) = ¢ for some 2 € ({4,y) where y € (0,20)
and gs(y) > t. [ y exists because gg(zo) > t and gp is continuous. z exists by
intermediate value property]. But this contradicts the definition of £4. Since
95(€5) <t [by continuity of gs and the definition of £4] the claim is proved.
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Problem 518

Suppose f :[0,1] — R is continuous. If f/(z) exists and is non-negative for
all irrational x show that f is monotonically increasing. What if f'(x) exists
and is non-negative a.e.?

We prove that if f/(z) exists and is non-negative except on a countable set
A then f is monotonically increasing.

Since ﬁ{f(x) + ex} > 0 outside A and f is be increasing if f(x) + ex is
increasing for each ¢ > 0 we may assume that f’(z) exists and is strictly positive
outside A. We assume that f(b) < f(a) with a < b and arrive at a contradiction.
Since (f(b), f(a)) is uncountable it is not contained in the countable set f(A).
Let uw € (f(b), f(a))\f(A). Let & = sup{z € [a,b] : f(z) > u}. Then £ < b.
[ The set defining ¢ is non-empty because f > w near a. Since f < w near
b we must have £ < b]. By continuity we have f(§) = u. For any § > 0,
sup{f(z) : = € [a,&) N (£ — 0,£)} > u by definition of £. Letting § — 0 we
get a sequence {z,} T £ such that f(z,) > f(§) Vn (because u > f(§)). But
then W < 0 which implies that £ € A. Hence u = f(§) € f(A), a
contradiction.

Problem 519

Let f € C([0,1]),0 < ¢ < 1and lim =IO — e R). Show that
heQ,h—0
fle)=1.

Let €, > 0. By uniform continuity there exists hs € Q such that |f(c+ 6) — f(c+ hs)| <
ed and |hs — 0] < 0. We have [ {00200 | < | Llesha)ofle) || Sleehioflesha)| o

flcths)—f(c)

3 — | 4+ € < 2¢ if ¢ is sufficiently small.

Problem 520

Let f : R — R be continuous and | f(z) — f(y)| > a|z — y| Vz,y where a > 0.
What can you say about the range of f7

f is necessarily surjective: its range is an interval. Since f is injective and
continuous, it is monotonic. We may suppose f is increasing in which case
f(na) > na by induction so f is unbounded above. Similarly the inequality
f(x) < f(y) — a(y — z) for © < y shows that f is unbounded below. Hence f is
a homeomorphism of R.

Problem 521

Prove or disprove: any continuous one-to-one function from Q into itself is
monotone.
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[ Recall that any continuous one-to-one function from R into itself is monotone].

zifx < V2
False: let f(x) = % if V2 < 2 <22 . fis decreasing in (v/2,2v/2) and
3z if x> 2v/2
increasing in (2v/2,00). It is clearly continuous and one-to-one on Q.

Problem 522

Let p be a polynomial with real coefficients. If all the roots of p are real
show that pp” < (p’)?. Is this true even if p has non-real roots?

n

Let p(z (z—ay) with a}s real. Then p'(z) = p(x) Z L_andp”(z) =
k=1

0 s o) Y e Honeo pal/(@) < (@) oty =

k=1 k=1 k=1
(p'())?. For p(z) = 2 + 1 we have p(z)p”(z) = 2(2* + 1) > 4a? = (p/(2))?
when |z| < 1.

Problem 523

a) Let E be a measurable subset of R such that F + % = FE Vn > 1. Show
that m(E) = 0 or m(E°) = 0.

b) Let f: R — R be Lebesgue measurable, f(z + ) = f(z) Vz, f(z + 8) =
f(z) Vx where a, 8 are non-zero real numbers with ¢ irrational. Prove that f
is a.e. constant. Give an example to show that f need not be a constant.

)Letm(E)>0a€Randf(): (Eﬂ[am])fora§m<oo. If
a<x<ythenf(y+ L= flz+L)=m(E (x+n,y+%])
( =m{F - o) Y0 (ary)) = m(EN (,y]) and f(y — 1) = fa— 1) = m(EN
T— =y — =

= m({E+ Y0 (z,y]) = m(EN(z,y]). It follows that f(y+1)— f(z+1) =
fly—2) = f(@ — 1) . Note that |f(y) — f(z)| < |y—=| so f is absolutely
continuous. Hence it is differentiable almost everywhere and using above equa-

tion we conclude that its derivative is a constant ¢ a.e.. Since w =

%{W and almost all points of E' have metric density 1 we see that ¢ = 1

Thus f(y) — f(z) = /f’(t)dtzy—x. This gives f(y) = f(a) +y —a Yz > a.

Thus f(y) — f(z) =y —x or m(EN(z,y]) = m((z,y]) for a < x < y. This gives
m(E° N (z,y]) = 0 for a < x < y which clearly implies that m(E°) = 0.

b) Let £ = {z : f(z) < a}. Then E +¢ = E for ¢ of the form na + mp
(n,m € Z). There is a sequence {¢;} of numbers of this type decreasing to 0
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since numbers of the form na +mg (n,m € Z) form a dense subset of Rby
Problem 87 above).

It is clear that the sequence {%} in part a0 can be replaced by any sequence
of positive numbers converging to 0. Since E/ +t; = I for each j it follows that
m(E) = 0 or m(E°) = 0. We have proved that for any real number a either
f<aaeor f>aae. If c=sup{a:m{z: f(z) <a} =0} it follows easily
that f = c a.e.. If f is the indicator function of {nv/2 4+ m+/3 :n,m € Z} it
follows that f has V2 and v/3 as periods but f is not a constant.

Problem 524

Prove that any set of positive (Lebesgue) measure in R contains a non-
mesurable set.

Let E be a bounded measurable set of positive measure. Let D be a countable
infinite subset of E. Let H be the subgroup of R generated by D. [ H consists

of finite sums andj where m is a positive integer, n;s are integers and d;s
j=1
belong to D]. Enumerate the distinct cosets of H as {H +¢; : i« € I}. Let
J={iel:(H+t)NE # 0}. Pick an element z; in (H + t;) N E for
each j € J. Let L = {z; : j € J}. Note that E C U(H—i—tj). Since E is
jeJ
uncountable and H is countable it follows that J must be uncountable too. Let
S=HN(E—-E). Then D—D C S C H and S is countable. We claim that
the sets s+ L (s € S) are disjoint. Suppose s1 # s3 and (s1 + L) N (s2 + L) # 0.
Then there exist [1,ls € L such that lo = s1+1; —s9 € [y + H and I3 # l. This
contradicts the fact that H + ¢;,7 € I are disjoint (so that {; + H and Iy + H
are disjoint since H + z; = t; + H for each j and ). This proves the claim.
We claim that L is a non-measurable subset of E. Suppose L is measurable.
If m(L) > 0 then m(S + L) = Zm(s + L) = oo and if m(L) = 0 then
ses
m(S+L)= Zm(s + L) = 0. We now prove that m(S + L) can neither be 0

ses
nor be co. Let us first prove that E C S+ L. If c € Ethenz € (H+¢t)NE

for some ¢ € I. This implies ¢ € J. Recalling that z; € (H +t;) N E we see
that x € H+x;. Let h =2 —x; so h € H. Since x —x; € E — E we get
he HN(E—-E)=S5. Now x =z; + h € L+ 5. This proves that £ C S+ L.
It follows that m(S + L) cannot be 0. It cannot be oo either because S + L is
bounded: S+ LC HN(E—-E)+E C E—E+ FE and E is bounded. The proof
is complete.

Problem 525
Show that a continuous function f : [a,b] — R maps Lebesgue measurable

sets to Lebesgue measurable sets if and only if it maps Lebesgue null sets to
Lebesgue null sets
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Suppose f maps Lebesgue null sets to Lebesgue null sets. If F is measurable
then F = UK” U D with K/ s compact and D null. It follows that f(F) =

U f(K,) U f(D) is measurable. Conversely suppose f maps Lebesgue measur-

able sets to Lebesgue measurable sets. Let E be a null set. If m(f(E)) > 0
then there is a non-measurable set S C f(E). [ See Problem 524 above]. Now
S=f(f"YS)NE),f~1(S)N E is a null set whose image is not measurable.

Problem 526

Prove that lim sup cosnz = 1 for every x € R.

n—oo

If 5~ is irrational then {ng= +m : n,m € Z} is dense in R. Let 7 > 0 and
choose § > 0 such that ly| < § implies cosy > 1 — 7. There exists n, m € Z such
that [n +m| < 2, so [naz +2wm| < 6. We get cosnz = cos|nz + 2mm| >
1 —n and we may (by changing m to —m if necessary) that n is positive. If
z _p

= with p,q integers then cosnxz = 1 whenever n is a multiple of ¢ so

limsup cosnx = 1.
n—oo

Remark: the following more general result is true: if f is measurable function
with period 1 then limsupf(nz) = ess.sup of f on [0, 1] for almost all z. [M.

Eidelheit, 1937]

Problem 527

oo

For any measurable function f : [0,00) — C show that /'{fg'z dx < (% +
0
A
1 2
msup [ 170 at.
A
0
T A A
Let g() :/|f(t)|2dt. Then/‘ﬁgz da (z)ﬁ|€+/g(m)uf%dx
0 0
A
/ - (IH,Q)Q dx. Hence
0

A A
f(x A (14 o A T A
/u:zw < I8+ [iR2ae — g 2 [0 g < )
0 0

0
(sup %)2 tan~! A < (5 + 7)(sup g(AA)).
Problem 528
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Prove that the maps f — {f(n)} from L'([0,2x]) into co | the spaces of
sequences converging to 0 with sup. norm] and f — f from L'(R) to Co(R) |
where Cy(R) is the space of continuous functions which vanish at oo with the
sup norm] do not have closed range.

If they have closed range they would have bounded inverses and there would
be constants Cq, Cy such that || f||; < Cy sup{‘f(n)‘ ‘neZ}|fll; <Ch sup{‘f(t)‘ :
t € R}. To get a contradiction from the first inequality use the fact that

|Drll; — 00 as n — oo where as ‘ﬁn(k)‘ < 1 Vn, k. For the second part let
9n = I(—pn). Consider fn(t) = {gn x g1} (t) = Gn(t)a(t) = S 2pnt2snt —

fa)] < /2.

sin ttSZm nt ’ dt =

2 sintsinnt
™ t2

. Since f,, € L' for each n we have fn = g, * g1 and

It suffices to show that ||f,||; — oo as n — oo. We have |[ |

A
n/ dszn/
~A

o0

vided £ < Z. Since / |82 | ds = oo it follows that || f,||; — 0o as n — oo.
0

A A
sin < sin s : .
— iy dsEQn/%% —Slsnzs|ds:%/|—sfs|ds pro-
0 0

sin e sin s
52

Problem 529

Let f be a right continuous function of bounded variation on R and p be
the real measure with p(—oo,z] = f(z) Vz. Show that |u| (R) = V}, the total
variation of f.

It is obvious that V¢ < |u| (R). For the reverse inequality it suffices to show
N

that Z |u(E;)| < Vy for any finite disjoint collection {En, Es, ..., Enx} of Borel
j=1

sets. By regularity of |p| it suffices to prove this when the sets F1, Fs, ..., Ex
are disjoint compact sets. In this case we can separate these compact sets by
disjoint open sets V;,1 < j < N. By the basic approximation theorem we
can approximate p(E;) by p(F;) where F; is a finite disjoint union of left-open
right-closed intervals lying in V;. Thus the proof is reduced to the inequality

N
Z |(E;)| < Vi when the sets are disjoint half-open intervals. This last fact is
j=1

bbviously true.

Problem 530

27
Let f : [0,27] — C be a function of bounded variation. Show that %/f(sc)e‘i"‘”dx <
0

Yt for all n € Z\{0}, V} being the total variation of f.

[n]
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Remark: periodicity of f is not required for this result.

Without loss of generality we may suppose [ is right continuous and f(0) =
0. There exists a real measure u such that [0, 2] = f(x) V. There exists a a real

2
measure v such that 4% = e~ Since v(R) = 0 for n # Owe get /f(x)dz/(x) =
0

27 2 27

—/V[O,x)du(x). Hence %/f(x)e‘im’dx <4 /%m_ld,u(a:) < ﬁ || (R) =
0 0 0
Y by Problem 529.

m[n
Problem 531

Give a proof of the uniqueness theorem and the basic approximation theorem
of measure theory which does not use outer measures and the extension theorem.

Let p be a positive measure on (2, F) and let A be an algebra that generates
F. Let f € L?(u),f > 0 and suppose f is orthogonal to the spaces M =
N

{Z ajla; + N > 1,a}s € C,Ajs € A}. Then /fdu =0 ( f is integrable!)
J=1 Q

and {A € F: /fdu = 0} is a sigma algebra containing A. Hence it contained
A

F and f = 0 a.e.. Thus every non-negative L? function belongs to the closure

of M in L?(u). The same is true of every function in L?(u). If f € L?(u) there

exists {f,} € M such that | f, — f|l; — 0. In particular if ¢ > 0, A € F and
N

w(A) < oo then there exists a simple function Z ajla;, (N >1,a5s € C,Als €
j=1

N
A) such that / Iy— ZajIAj dp < e. It is easy to see that if a; ¢ {0,1} then
j=1

n(AAA;) = 0. Hence / |[I4 — Ip|du < ¢ for some B € A.

Problem 532
Show that no set of positive Lebesgue measure is a set of uniqueness for
o0

Fourier series, i.e. m(FE) > 0 = there exists f € L'[0, 27| such that Z f(n)einT =

0 for every z € [0,27]\E but f(n) # 0 for at least one n.

Let f = Ik where K is a compact subset of E with m(K) > 0. By Riemann”s
Localization Theorem the Fourier series of f and that of the zero function have
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the same sum (namely 0) at every point of K€. It follows that the Fourier series
2m

of f has sum 0 at every point of E¢. However f(()) = %/IKdm >0
0

Problem 533

Prove that a continuous function ¢ : (a,b) — R is convex if and only if
lim sup¢(z+h)+¢(};7h)72¢(x) > 0Vx € (a,b). As a corollary a twice differentiable
hl0
function if convex iff its second derivative is non-negative.

If ¢ is convex and f is its right-hand derivative then ¢(x + h) + ¢(z — h) —

x+h x
20(e) = [ 10y~ [ e
T z—h
x+h x+h
= /f(t)dt— / f(t—h)dt > Osince f(t)—f(t—h) > 0. Now suppose liiri(s)up¢(w+h)+¢(};2_h)_2¢(l) >

x

0. Sup;)ose plat+(1—a)s) > ap(t)+(1—a)¢p(s) for some a < t < s < band some
a € (0,1). Let ¢(z) = ¢(x) — o(t) — $={(s) — &(t)}. Then 9(t) =1(s) =0
and v is continuous. Also ¥(at + (1 — a)s) > 0. Hence there exists ¢ € (t,s)
such that ¥(c) = sup{e(y) : t <y < s}. This implies w(w+h)+w§f{h)72¢(w) <0
and this yields 2@ te@=h)=2¢@) — ( fo; all sufficiently small h > 0, con-

h2
tradicting the assumption that limsup ¢(w+h)+¢(,ﬁ_h)_2¢(x) > 0. We have now
110
d(z+h)+¢(z—h)—24(
h2

proved that the condition limsup 2 >0 implies convexity of

h10
¢. Now suppose lirfigup ¢($+h)+¢%—h)_2¢(w) > 0. If ¢;(z) = ¢(x) + ex? then
limsup¢1($+h)+¢1}(bf_h)_2¢1(w) > 2 and hence ¢, is convex for every £ > 0.

hl0
Letting € — 0 we conclude that ¢ is convex.

Problem 534
If f e LY(R)N L®(R) and f > 0 show that f € L'(R) and f(z) =

\/%7 / f(t)e**dt a.e. Ts this true if the hypothesis that f € L>°(R) is dropped?

The second part is just the inversion formula. To show that f e L'(R)
let du(z) = % and consider /f(t)e_%dt = /{/f(x)e‘“‘”du(x)}e_%dt =
J{f e e R dt} f(x)de = [ L tes f(x)da so /f(t)e*%dt < || fs0]l Vn. We

have used Fubini, the fact that [ emitre—Mgp=1_n__ (which follows by two

T 1+n2z2
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integrations by parts) and the fact that [ 7rangmzdac = 1. Letting n — oo
we conclude that [ f(t)dt < ||fll... If f € LY(R) and f > 0 it does not
follow that f € L'(R). In fact for any f € L'(R)\L'(R) the function g(z) =

m/f z — ) f(—y)dy is in L'(R) and §(t) = f(t)f > 0. If § € L'(R) then

fe L2( ) which implies f € L?(R), a contradiction.
Problem 535
If f € L'(R),g € L2(R) and f = § a.e. show that f = g a.e.
Remark: an "elementary" proof is expected, one that does not use distribu-

tion theory; g is defined via Plancherel Theorem and f \ﬁ / f(z)e = dx.

1. Let ¢ € LY(R)N L*(R) N L*°(R) and consider the functions f ¢ and g ¢.
Since f x ¢ € LY(R) N L>(R) it follows that these two functions are both
in L?(R) and they have the same Fourier transform. Hence f * ¢ = g x ¢

a.e. Now let ¢, (z) = %e’my 2. These functions form an approximate

identity in L'(R) and hence f * ¢,, — f at Lebesgue points of f. Also
(g% ¢,) = gb, — §in L2(R) because ¢, (t) = e=7*/2n _, 1 boundedly.
It follows that g * ¢, — g in L*(R) which yields a.e. convergence for a
subsequence. Hence f = g a.e.

Problem 536
Let f : R — C be a measurable function such that f, = f a.e. for every y,

where f,(z) = f(z — y). Show that there is a constant ¢ such that f = c a.e..

This is a simple consequence of Fubini: [ [ |f(z —y) — f(z)|dzdy = 0 which
implies ff \f z —y) — f(z)|dydz = 0; hence there xo such that [|f(zo —y) — f(zo)|dy =
0or [|f(t) z0)|dtf()sof f(xo)ae

Problem 537 (Bump functions)
a) Show that there exists a C*° function on R which is 0 on (—o0,0], 1 on
[1,00) and has its range [0, 1].

b) Show that there exists a C* function on R which is 0 on (—oo, —2]U[2, 00),
1 on [—1,1] and has its range [0, 1].
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0ifz <0
For a) take f(z) = lifz>1 _
1/t
[1+61§(+t)]‘1if0<x<1

Oifze <—2o0rx>2
lif —1<z<1
flz+2)if —2<z< -1
flz—=2)ifl<z<?2

For b) take g(z) = where f is the function in

Problem 538

Consider a function ¢ in L*(R) such that < ¢, (2"z—k) >=0Vn € N,Vk €
Z (where <, > is the inner product in L?(R)). Show that such a function cannot
be a C* function with compact support unless ¥ = 0.

Remark: in the language of Multi Resolution Analysis of wavelets this says
there is no smooth wavelet with compact support for a Multi Resolution Analy-
sis.

Suppose < 1,9 (2"x — k) >= 0 Vn € N,Vk € Z, ¢ is C* and has support
n [-A.A]. Consider [¢(a+ 5%)i(z)dz. If a is a dyadic rational then this
integral is 0 for n sufficiently large because 2" [ (y)¢(2"(y — a))dy = 0 if 2"a
is an integer which is true for all n sufficiently large if a is a dyadic rational. Now
Y(a+ 57) — t(a) as n — oo boundedly for —A <z < A. Hence 9(a ) [¢ =
lim [ ¢(a+ 5% )1 (x)dx = 0 whenever a is a dyadic rational. It follows that if ¢ is
not identically 0 then [ = 0. We next show that [a¢(z)dz = 0. Let f(z) =

/{p(t)dt _ /{p(t)dt. Then 0 = [(a + 2)P(x)de = bla+ &) (@)% —

A
s a+ 55)f(x)dz. e fact that = 0 mmplies that f vanishes outside
21 ¢’ 2”f dx. The f: h ¥ = 0 impli hat f ish id
—A

[—A.A]. Also /w'(a + %) f(x)dz — ¢'(a) [ f(z)dz. If 4" vanishes on dyadic

rationals it vanishes everywhere and this makes 1 a constant function with
ompact support' It follows that if 4 is not identically 0 then [ f = 0. However

A
[f= W(t)dtdr = Y(t)dzdt = | (A —=t)p(t)dt = A [ — [tp(t)dt
[ [rowa [ frown- |
T A
It follows that [ty (t)dt = 0. If g(z /f t)dt then /1//(61 + 57) f(z)dr =
—-A
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A A
Plat £)g(@)>, - / W(a + £)g(x)dw so / W"(a + £)ga)dz = 0 for

n sufficiently large if a is a dyadic rational. Since the only polynomial (of
degree 0 or 1) which has compact support is the zero function we conclude as

A A
before that /g . This yields /T_tw(t)dt =0so0 /tZ’(/J(t)dt =0. An
N A N

A

induction argument shows that / t")(t)dt = 0 for every positive integer n. |
A

The induction hypothesis is [ ¢"1(t)dt = 0 and /¢(") (a+ 5%) fu(t)dt = 0 for

n sufficiently large whenever a is a dyadic rational where fii1(x / fi(t)

and fo = 1]. It follows by Weierstrass Theorem that Jhp =0 for every
h € C|—A, A]. Hence, taking h = ¢ we get ¢ = 0.

Problem 539

Let f € L?(R). Show that the following two conditions are equivalent:

a) f € CYR) and f' € L*(R)

b) zf(x) € L*(R).

Proof of a) implies b): we clalm that iz f(z) = (f/) from which b) follows.
We have f2(x) — f2(0) = 2/f '(t)dt. Since f and f’ belong to L?(R) it
follows that ff’ is 1ntegrable so the right side has a finite limit [ as x — ooc.
It follows that f2(x) — [ + f2(0) as x — oo. The fact that f? € L*(R) show

that [ + f2(0) = 0 and f(x) — 0 as © — oo. Similarly f(z) — 0 as * — —oo0.
A A

Now consider /f’(t)e_“”’dt = f(t)e 1|2, + it/f(t)e_imdt. Letting A —

A
oo we get (f) (t) = 0+ itf(t) since /f’(t)e_”"dt — (") (t) in L*(R) and
A A -
/ f(tye-*rdt — f(t) in 12 / f(tyeitedt.
—A —A
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b) implies a): f and zf(z) belong to L2(R) and hence f € L'(R). [ Indeed

1l ’f’ < / ‘f‘ + / Fl‘{‘xf’} and both terms are finite by Holder”s in-
{lz|<1} lz[>1}

equality]. Hence f(z) = F /f Ye''dx Vo and f'(z) = \/%/itf(t)e”’”dm
by a simple application of Do;ninated Convergence Theorem. Tﬂus f is contin-
wously differentiable and f’(—z) is g(x) where g(z) =iz f(z) . Since g € L*(R)
we get f' € L*(R).

Problem 540

Prove the following version of the Inversion Formula For Fourier Transforms
of L' Functions:

A
Let f € L'(R). Fixz € R. Show that lim [ ¢ f(t)dt = 0 if Hatt)if(="t)
A
is integrable on (—¢, ) for some § > 0. Hence show that i
A
is integrable on (—d, ) for some ¢ > 0 then Aliémoo/em”j?(t)dt = f(x).
A

Remark: if f is differentiable at x then the integrability condition is satis-
fied. What we have here is the Dini”s test for convergence of Fourier integrals.
Jordan”s test is also available; c.f. Pinsky book or Titchmarsh (Introduction to
Theory of Fourier Integrals).

Note that if f € L'(R) and f = 0 then f ¢, is differentiable at 0 and its
Fourier transform vanishes identically, where ¢,, (z \/7 e /2 Tt follows
by this problem that f * ¢,, = 0 ¥n and since f * r;S — fin L*(R) we see that
f = 0. Thus a uniqueness theorem for Fourier transforms of L!(R) functions
follows from this problem.

f L@t +fa—t)—2f ()
t

A A 0o

oo A
We have/ e'te f(t)dt = /e /f Ve~ du(y) /f /e‘“yemdtdu(y) =
—00 —A

/ Fy) 22 dy(y)
A 00
= /f T—y %dﬂ(y). Clearly this implies /e”””f(t)dt = / f(mfy);rf(ﬁy) ZSAY 1 (y) —

Yy

—o00 —A —o00
0 by Riemann Lebesgue Lemma since W is integrable on (—4d,9) as
y

well as on the complement of this interval.
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fatt)+f(z—t)—2f(2)

Now suppose : is integrable on (—4,0) for some § > 0.
Let g(t) = f(t) — f(z)e*/2¢=**/2. We claim that the first part applies to g
A

in place of f so Alim / rgt)dt = 0; Since g(t) = f(t) — f(x)e$2/26*t2/2

A
A A
we get Alim /emﬁf(t)dt = f(x)e””2/2Alim /e“ze’tg/th = f(x). Tt remains
—A —A

to verify that w is integrable on (—¢,d) for some 6 > 0. Since

gla+t)+g(z—t) _ f(ac+t)+f(m7t) — f(@)e 222 e—<m+t>2/2+e—(m—t)2/2 flatt)+f(z—t)
3 3

e—t2/2[€rbt+e—wt]

—t /2[ wt+e xt ]
f(z)=——5—"“— we only have to show that 2 ;

in a neighbourhood of 0. This is clearly true.

is integrable
Problem 541

A b
Let f € L?(R) and Sa f(x / ye''®du(x). Show that /SAf(:z:)dx —
—A a

b
/f(x)dm whenever —oo < a < b < 0.

A simple Fubini argument shows < SAf,g >=< f,Sag > Vf,g € L*(R).
Note that |[Safll, = I[,A,A]fHQ < Hf”2 = ||f|l5- It follows that the formula
< Saf,g >=< f,Sag > holds Vf,g € L*(R). Now put g = I(5p. We get

b

/SAf(:E)dx =< Saf,g >=< f,Srg >. Now Sag — g in L?(R) because

I_an)G — §in L*(R) so Sag(z) — (§) (—x) = g(z). Hence < f,Sag >—<
b

frg>= /f(fv)dx

Problem 542

Let i be a complex Borel measure on the unit circle 7" in the complex plane
such that [ z7"du(z) — 0 as n — co. Show that [ 2"du(z) — 0 as n — oo.

In particular, if f € L'(T) then f(n) — 0 as n — oo iff f(n) — 0 as
n — —oo.

N
Consider [z~ "p(z)du(z) where p(z) = Z cxz® for some positive integer
k=—N
N and some complex numbers c_y,...,cy. Since f z_"zkd,u(z) —0asn — oo
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for each k it follows that [z~ "p(z)du(z) — 0. By Stone - Wierstrass Theo-
rem polynomials form a dense subset of C(T) w.r.t. the sup. norm. Hence
[ 27"g(2)du(z) — 0 for every g € C(T). Also any function in L'(|u|) can
be approximated in the norm of this space by continuous functions. Hence
[ 27"g(2)du(z) — 0 for all g € L>(|u|) (because L>°(|u|) € L*(|ul)). It fol-
lows that [ z7"d|u|(z) — 0 which implies [ 2"d|u|(z) — 0 as n — oo [ since
z~™" = 2"]. Repeating the argument above we get [2"g(z)d|u|(z) — 0 for
every g € L>(|u|). Hence [ 2"du(z) — 0 as n — oc.

Problem 543

Let f and g be complex valued continuous function from [0, c0). If / flz—

0
y)g(y) = 0 Yy > 0 show that either f = 0 or ¢ = 0. Give an example of
continuous integrable functions f and g on R such that f % g = 0 but neither f
nor g vanishes identically.

ST if g £ )
lifz=0
€' f(z). Then the Fourier transform of f is ﬁ(l —|Z])* as see easily using

We first give the counter-example: let f(z) = { and g(x) =

the inversion formula. In particular the support of f is contained in [—2,2].
Also §(t) = f(t — a) which has support in [a — 2,a + 2]. If a > 4 we see that
fg = 0 which implies f * g = 0.

Now we come to the first part of the problem. We shall write (f * g)(x) =

/ f(x —y)g(y). This coincides with the usual definition of convolution if f

0
and g are integrable on R and both vanish on (—o00,0). Let fi(z) = zf(x)
and g1(z) = zg(x). We have /(x —y)f(x —y)gly)dy + /yg(y)f(w —y)dy =

0 0
T

/f:rf dy*Oor/fla;— ()dy+/ L) f(z — y)dy = 0. Whiting

thls as fixg+gixf = Owe get [f*gl]*[fl*g—i—gl*f] = 0 which says
(fi*xg1)*(f*g)+hxh =0 where h = f % g;. Using the hypothesis again we
get hx h = 0. By the next problem this implies h = 0 and hence f x g; = 0.
Repeating this argument we get f * g, = 0 for all n where g,(z) = 2"g(x).

Thus /y"g(y)f(x —y)dy = 0 for all n. By Wierstrass Theorem it follows that

0
y"g(y)f(x —y) =0 for 0 <y < x,z > 0. This implies either f =0 or g =0. |
Given t,s >0 put =t + s and y = ¢ to get g(¢)f(s) = 0 Vi, s > 0].
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Problem 544

If f is continuous on [0, 2A] and /f(x —y)f(y)dy = 0 for 0 <z < 2A show
0
that f vanishes identically on [0, A].
Remark: if we define f to be 0 on R\[0, 2A] it does not follow that f* f =0

so theory of Fourier transforms does not yield this result immediately.

[ Proof from Yosida’s book]. The proof requires some preliminaries.

Lemma
A
lim Z / ki@=y) f(3))dy = /f(y)dy if f is continuous on [0, A] and
jHOO
0
0<x< A.
- A
By an easy application of Fubini’s Theorem Z %/ekj(w—y)f(y)dy =
k=0 0

A o0
/Z( DI b)) £ (y)dy
0

k=0

- A
= —/e_ej(zfy)f(y)dy — — f(y)dy as j — oo. Hence lim Z %/ekj(z_y)f(y)dy =
0

0 R
A
- [ 1w >dy+/ dy—/f
’ Lemma
A
If f is continuous on [0, A] and sup /e”yf(y)dy < oo then f =0.
" 1o
A
In previous lemma we can replace f(y) by f(A—y). We get hm Z / kilz=y) f(A—
0

T o A
k=1 .
y)dy = / F(A-y)dyor lim S ek [ohia ) f(a-y)dy - / f(a-
k=1 0 0

(o) A 00
Py But |37 et / A (A = y)dy| < M|y et =2
k=1 5 Py
= M(eemfm —1) —>0asj— o0if 0 <2z < A. Hence /f(A—y)dy =0
0
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A
if 0 < z < A. In other words, / f(z)dz = 0if 0 < & < A which forces f to

A—x
vanish identically.

24
Now /63(2A ch)/f x—y)f(y)dyde = 0. Putu=A—yand v =2A—u—x =

0
A+y—uz Notethat0§y§x§2A is equivalent to u +v > 0,u < A and

v < A. Also, y = A—wu and z = 2A —u—wv. Since the Jacobian of (z,y) — (u,v)
1Slweget/ / J(ut0) f(A —v) f(A —u)dudv = 0. Let R = {(u,v) : ut+v >

0u<Av<A} and Ry = {(u,v) : u+v < 0,u > —Ajv > —A}. Then

RUR; = {(u,v) : —A < u,v < A}. Also // eI W) F(A —v) f(A —u)dudv =

RUR4
A

(/ej”f(A—u)du)Q. Hence (/Aej“f( A — u)du)? //e““*” A —v)f(A -
“A “a

w)dudv + //ej(“+“)f(A —v) f(A — u)dudv

//63"+”)fA v) f(A— ududv<//fA v) f(A—u)dudv = /f

) y)? < CA? where C/2 is an upper bound for |f| on [0, 2A We now have

/ej“f(Afu)du < VCA. Since /ejuf( u)du| < /f —u)du| =

A
A

24
/f t)dt| < CA we have /e]“f( —u)du| < (C + vC)A. By the second

lemma above we conclude that f(A—u)=0VYuel0,A]

Problem 545

If f:T — T satisfies the equation f(z?) = f2(z) Vz € T show that there is
an integer n such that f(z) = 2" Vz € T.

Remark: this is stronger then the statement that the only continuous char-
acters of T' are the functions z — 2.

There is a continuos function g : R — R such that f(e??™) = €279(") and
9(0) = 0. [ Theorem 7.6.2, p. 241 of "A Course in Probability Theory" by
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Chung]. Claim: there is an integer n such that g(z) = na Vz. For this we
observe two facts:

1) g(t + 1) — g(t) is an integer n independent of ¢

2) g(2t) — 2¢(t) is an integer m independent of ¢

) mi(t+1)
These facts are easy: e2milg(t+1)—g ()] — %
f(e'i,47rt

Trezae = 1 by hypothesis. The fact that the integer values in 1) and 2)
do not depend on t follows by continuity. Let h(t) = g(t) — nt + m. Then
h(t + 1) = h(t) and h(2t) = 2h(t). This gives h(5) = 5ch(t) so h(s + 5) =
seh(28s+1) = 5-h(2%s) = h(s). Iteration gives h(s+ ;—k) = h(s) and continuity
implies h(s + z) = h(s) Vs,z € R. It follows that h is a constant which has to
be 0. Thus g(t) = nt +m and f(e2™) = e2™9(1) = 2™nt o f(2) = 2",

— 1 and e2mila(20)—2g(t)] —

Problem 546

If 1 is a positive Borel measure on R such that p, << p for every real
number ¢, where p,(E) = pu(E + t), show that p is absolutely continuous w.r.t.
Lebesgue measure.

We have [ p(E—x)de = [ [ I{zy)aryeprd(pxm)(z,y) = [ m(E)du(y) = 0
if m(E) = 0. Hence there exists  such that u(E — z) = 0. By hypothesis this
implies p(E) = 0.

Problem 547

i (=1)*64/,, converge
k=1,k even

to 3\ weakly (i.e. in the weak* topology of C*[0,1]) and that the positive finite

n

Prove that the positive finite measures p,, =

measures v, = % g (—1)k+15k/n also converge to %)\ weakly where A is
k=1,k odd

Lebesgue measure on (0,1). Conclude that 1 Z(—l)kf(%) — 0 as n — oo for
k=1
every f € C[0,1].

Note that ,,([0,1] — % and v, ([0, 1] — 1. Hence, using standard arguments

in Probability Theory it suffices to show that 1 Z (—1)keith/n %et—_l

1t
k=1,k even
n

and 1 Z (—1)keitk/n %67:;1 Vt. These facts can be proved by direct
k=1,k odd
computation of the geometric sums involved.
Remark: the second part can be proved more easily as follows. Any f €
C'[0,1] extends to a continuous . function F on [0,27] with F(0) = F(2n). It
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follows from Fejer’s theorem that f can be approximated uniformly by trigono-
n n

metric polynomials. Since %Z(—l)kf(%) — iZ(—l)kg(fl)‘ < |If =gl it
k=1 k=1
suffices to prove the result when f(z) = "™ for some integer m. In this case

the convergence of %Z(—l)k f (%) to 0 is seen easily by explicit computation
k=1
of LY (=1Ff(L).
k=1

on

Remark: by the method of above remark we can also show that 5 Y (—1)* (
k=1

0 as n — oo for every f € C[0,1].
Problem 548

Let f, ', fu, fl(n =1,2,...) and g be continuous on [0, 1]. If f, — f point-
wise and f], — g pointwise show that f' = g on [0, 1].

Suppose f'(a) # g(«). Let 6 > 0 and [a, b] be an interval containing « such
that a < band |f' — g| > § on [a, b]. We claim that {f/} is uniformly bounded in

some interval [¢, d] C [a,b] with ¢ < d. To see this we write [a, b] as U m {z e
k=1m=k
[a,b] : |f].(x) — g(x)] < 1}. By Baire Category Theorem there exists an interval

[c,d] C [a,b] with ¢ < d and [¢,d] C m {z € [a,b] : |f],(x) —g(z)| < 1}. Tt
m=k
follows that |f; (z)| < 1+ |lg||., Vz € [¢,d] Ym > k. This proves our claim.

d] dl
Let [c1,d1] C [e,d]. Let By DCT we now get /f,’L(y)dy — /g(y)dy or f(dy) —

(&) Cc1
dy

dy
f(ex) = lmlfulds) ~ fulen)) = tim [ f1)dy = [g(u)dy. This mplies = g
on [e,d], a contradiction. h h
Problem 549 [de Bois -Rleymond Lemmal
Let f,g € C[0,1] and /[fh’ + gh] = 0 for any continuously differentiable

0
function h such that h(0) = k(1) = 0. Show that f'(z) exists and equals g(x)
Vz € [0,1].

Proof: if the functions involved are complex valued we can reduce the proof
to the real case. So assume that f and g are real valued

262



1

Step 1: Let f € C]0,1] and /fh = 0 for any continuous h such that

h(0) = (1) = 0. Then f =0. ’
If f>0on (a,8) C [0,1] with @ < S take h(z) = (z — a)(8 — z) for

a < x < [ and 0 elsewhere to get a contradiction.
1

Step 2: Let f € C[0,1] and / fh' = 0 for any continuously differentiable

0
function h such that h(0) = h(1) = 0. Then f is necessarily a constant.

Let ¢ = /f and h(z /{f — c}dt. Then h satisfies the conditions
1 1
in the hypothesis, so /fh’ = 0. This also implies /(f —c¢)h/ = 0 and hence
0 0
1
/ 2 =0. Hence f(x) =c Vz.
0
Step 3

1
Let f,g € C[0,1] and / [fh' + gh] = 0 for any continuously differentiable

0
function h such that h(0) = h(1) =

x

| I;et () = f(z) — | S/g Then ¢ is cor:clnuous and /¢/:/ /fh’
//g(t)dth'( dx. Now //g t)h (z)dz = /g(t)dth(x)|0 — /g(w)h(x)dx.
0 0

L
Hence / oh! = / fh + / h = 0 for any continuously differentiable function

h such that h(O h(1) = 0, by hypothesis. By Step 2 ¢ is a constant,say C.

Hence f(x / g = C which implies that f is differentiable and f’ = g.
0

Problem 550

Let x be a real number such that n” is an integer for each n € N. Prove
that z € {0,1,2,...}.
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If0 <2 < 1then (n+1)* —n® = £ ! for some £ € (n,n +1). But
0 < z£%71 < zn*~1 < 1 if n is sufficiently large. This is a contradiction to the
fact that (n+ 1)* —n® is an integer. Thus, = 0 or z > 1. Suppose 1 < z < 2.
Then (n + 2)* — 2(n 4+ 1)* +n* = z(z — 1)z£" % for some £ € (n,n + 2) and
we can argue as above to get a contradiction. Clearly, the following version of
MVT is all that is required to complete the proof: let f : (0,00) — R be a
C* function define Tf(z) = f(z 4+ 1) — f(2). Then T"f(z) = f(™(¢) for some
¢ € (z,z +n). The proof of this is by repeated application of the standard
MVT.

Problem 551

Give an example of functions f,g : R — R such that both of these functions
have intermediate value property (IVP) but their sum f + g does not.

We use the facts that any derivative has IVP and the square of a function
with IVP has IVP. | See solution to Problem 416 above for the first fact. The
second fact is obvious]. Let f(z) = [+L{z?sin 1}]? and f(z) = [ {a: cos L}]2,
Then f and g have IVP and f(a:)+g(x) [22 sin L —cos 1]2+[22 cos L +sin 1]2 =
42% + 1 [with £(0) + g(0) =0+ 0=0]. Obviously, f + g does not have IVP.

Problem 552

Give an elementary argument to show that the only locally integrable addi-
tive functions from R into itself are multiples of the identity map.

Remark: the only measurable additive functions from R into itself are mul-
tiples of the identity map. [see Problem 79 above]. We are asking for a simple
proof which does not use the fact that £ — F contains an interval around 0 if
F has positive measure.

Integrate the equation flz+y) = f(z)+ f(y), where 2,y > 0 w.r.t. x from 0
t+y t+y

to t to get /f dx—/f Ydz +tf(y). We claim that /f dm—/f

t+y t+y

is symmetric in ¢ and ¢, i.e. /f da:f/f dxf/f dmf/f

This is easily verified by con51der1ng the cases y < ¢ and t<wy separately It
follows that tf(y) = yf(t) Vt,y > 0. Hence tf(1) = f(¢) V¢t > 0 which completes
the proof since f(—z) = —f(z).

Problem 553

If f:R — R is additive and not continuous show that its graph is dense in
R2.
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Pick a such that f(a) # af(1). Let T : R? — R? be the linear map whose

f(ll) fgla) ) [ In other words, T'(z,y) = (x +ay, f(1)z+ f(a)y)].
Then T is non-singular and hence a homeomorphism. Hence {T'(z,y) : z,y € Q}
is dense. If x,y € Q then T'(z,y) = (x +ay, f(L)z+ f(a)y) and f(1)z+ f(a)y =

f(z+ay) because z and y are rational. Thus, the graph of f contains the dense
set{T'(z,y) : v,y € Q}.

Problem 554

matrix is (

Let f and g be continuous functions on [0, 1] such that [(fh’' + gh) = 0 for
every continuously differentiable function h such that h(0) = k(1) = 0. Show
that f is differentiable and f’ = g.

Remark: this is a basic lfmma in Calculus of Variations.

Suppose f(z) — f(0) — /g(t)dt > 0 on some interval (a, §) with a < 3. We

0
construct a continuously differentiable function h such that h(0) = h(1) = 0,
B

R >0 on (a,8) and h =0 on [0,1]\(e, 8). Once this is done we get /[f(:r) -

[e%
T

f(0) — /g(t)dt}h’ > 0 which gives ( by an integration by parts). — [ gh —
0

Bz B

//f(t)dth' =—[gh+ /gh > 0 a contradiction. We can then conclude that

a 0 «@
T

f(z) — f(0) — /g(t)dt < 0 and , since f and g can be replaced by —f and —g,

0
-

we get f(x) — f(0) — /g(t)dt = 0 Vz, completing the proof. A function h with
0
desired properties is given by
Difr<aorz>f

x

/(y—a)(ﬁ—y)dy— (2—a)P6()ifa<s>pg “heredisa

[e3

h(z) =

continuously differentiable function with the following properties: ¢(8) = e

x

/(y*a)(ﬂfy)dy

and (b/(/B) = —26“(67—01)3
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Problem 555

If f € L?(R) show that the linear space spanned by translates of f is dense
in L2(R) if and only if m{t: f(t) =0} = 0.

Remark: the corresponding result for L (R) is also true, but Segal has shown
that for LP(R) with 1 < p < 2 the corresponding result is not true.

Suppose translates of f span a dense set in L2(R) and m{t : f(t) = 0} > 0.

There exists a compact set K C {t : f(t) = 0} such that m(K) > 0. Con-
N N

sider < f_K,Zajij >=< IK,(Zaje_“mj)f >= 0 whenever N > 1,a; €
j=1 j=1

R,z; € R for 1 < j < N. It follows by hypothesis that I_x = 0. Hence
I_r = 0 contradicting the fact that m(K) > 0. This proves the ”only if”
part. For the converse suppose g is orthogonal to all the translates of f. Then
o)) f@ewtde = [[§(@)] file)ds =< fing >=< fug >= 0. Tt fol
lows that the Fourier transform of the integrable function [§(z)]~ f(z) vanishes.
Hence [§(z)]” f(z) = 0 a.e. If m{t: f(t) = 0} = 0 then we get § = 0, hence
g = 0 as required.

Problem 556

Let T : LP(u) — LP(p) be a linear map which maps nonOnegative functions
to non-negative functions. Show that 7" is a bounded operator.

Suppose sup{||Tf]| : f > 0,||f|| £ 1} = co. Then there exists a sequence
of non-negative functions {f,} such that ||f,|| < 1 Vn and || Tf.| > n?. Let

o0
f= % The series converges in the norm of LP(u) and defines a non-
n=1
N
negative function f in LP(u). Since f > % for any positive integer N
n=1

=

N
the hypothesis shows T'f > Tné" Hence [(Tf)Pdp > [( Z
R ZILEEN Z n2 N. Since N is arbitrary we have

fZ 3 3

arrlved at a contradiction. Hence sup{||Tf|| f>0,]fll <1} < oo. Since any
f € LP(p) can be written as f* — f= and [|fF]| < [fIl, I/~ < [f] we get
sup{||Tf] : [If|l <1} < oo as required.

Problem 557

Prove that the following converse of Birkhoff’s Ergodic Theorem is false:
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If (2, F, P) is a probability space, T : 2 —  is measurable and lim % Z
k=0
exists almost everywhere for every f € L!(P) then T is measure preserving (i.e.
PoT~!=P).

Let (Q,F,P) be the interval [0,1) with Borel sigma field and Lebesgue

measure. Let T : [0, %) [ ,1) and T : [%,1) — [0,4) be measurable
maps such that 72 = I. For example, let T(z) = _|_ 3z on [071) and
T(x) = § — 15 on [1,1). Then lim —Zf = J@HTE@) gy ang

P(T7'[1,1)) = 1 # 2 = P ([4,1)). Note that hm n—HZfoTk exists in

L'(P) also.

Problem 558

Let L'(u) denote the space of real valued integrable functions w.r.t. a finite
positive measure p.

a) Suppose f, — f weakly in L*(u), g, — g weakly in L*(p) and |f,| < gn
a.e.. Show that |f] < g a.e..

b) Prove or disprove: f,, — f weakly in L'(u), g, — g weakly in L'(u) and
[fr| < lgn| a.e.. Show that |f] < |g| a.e..

1if f(z) >0
For any measurable set A we have / |fldp = /fd)du where ¢(z) = 0if f(z) =
4 4 —1if f(z) <0

Since I4¢ € L™ (1) we get / |fldp = lim /fnqbdu. Hence | |f|dp < lim sup/gndu =
A A A

n—oo

/gdﬂ. Hence |f| < g a.e..
A

The statement in b) is false. For this we take a sequence {g,} C L'(u)
such that |g,| = 1 a.e. and g, — 0 weakly. [ On such sequence is provided
by gn = 2I;x,—0y — 1 where X, (w) is the n — th coefficient in the expansion
of w € (0,1) w.r.t. base 2; the basic measure space is (0,1) with Borel sigma
algebra and Lebesgue measure P; note that if A € o{X1, X>,,,, X;} for some

k then / gndp = 2P{AN {X, = 0}) — P(A) = 2P(A)P{X,, = 0} — P(A) = 0

A
whenever n > k (by independence); Now given any Borel set A and € > 0 then
there exists k € N and B € o{X1, Xa,,,,X;} such that P(AAB) < €. Since
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/gndu— /gnd,u < ¢ it follows that /gndu — 0]. If f, = 1 then f, — 1

A B A
weakly, g, — g = 0 weakly, |f,| < |gn| a.e. for each n but |f| > g everywhere.

Problem 559 [ Riemann Lebesgue Lemma]

Let 1 be a probability measure on (2, F) and let { f,, }cz be an orthonormal
set in L?(p) such that sup || f,||, < co. Show that [ ff,du — 0 as n — oo for

every f € L'(u).
Remark: taking p to be the normalized Lebesgue measure on [0,27] and
fn(x) =™ n € Z we get the usual Riemann Lebesgue Lemma.

Proof: if f € L*(u) then Y |< f, fn >| < 00 0 [ ffadu — 0. Given f €
L*(p) and € > 0 choose a bounded measurable function g such that ||f — g||, <
e. Then [ gfodp — 0 and | [ ffndp — [ gfadp| < sup|full € Vn.

Problem 560

Let u be a finite measure, {f,} C L'(u), f, — f a.e. and assume that
given € > 0 there exists § > 0 and a positive integer ng such that / fndp| <e
whenever u(E) < § and n > ng. Show that f is integrable. :

Choose A such that p{x : |f(z)| > A} < . Then p{z : |fn(z)] > 2A} < §
for n sufficiently large because u{x : |fn(z) — f(z)] > A} — 0 as n — oo. Hence

fndp| < € for n sufficiently large. This shows that the sequence

z:| fn ()| >2A}
{f.} is uniformly integrable and this implies f € L*(u) and f,, — f in L' (u).

Problem 561

Prove or disprove: tlim / |fi(z) — f(x)| dz exists for every f € L!(R) where

— 00

fi(z) = f(z —1t).
If f is continuous with compact support then f; and f have disjoint sup-
oo o0

ports for [¢| sufficiently large. Hence / |fe(x) — f(z)|dz = / |fe(x)| dz +

—00
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/ |f(z)]dx = 2/ |f(z)|dx. Since continuous functions with compact sup-

—00 —00

port form a dense subset of L*(R) it follows that tlim / |fe(x) — f(z)| dx and
—00

hm / | fi(z x)| dz both exist and the both the limits are 2/ |f(z)] de.

Problem 562
Show that Z |sin(27nz)| — 1 in the weak* topology of L>[0,1] = (L*[0, 1])*.

27wnb 27 (j+1)

Proof: ifa < bthen/|sm 2mnx)| dx = / siny|dy = 5+ Z / |sin y| dy+
2mna 2my
o(1) where the sum extends over all j such that 2mna < 27j and 27 (j+1) < 27nd
27 (j+1)
ie., ma < j and j < mb— 1. Since / |siny|dy = /|Siny| dy = 4

2mj
b

we see that /\sin(?wnmﬂdw — Zlimnb=l=ne — 2(p _ q). This implies that

[ [sin(2mna)| f(z)de — 2 [ f(z)dz Vf € L'[0,1].
Problem 563 [From Zaanen’s "Integration"]

Suppose | f| < g € L0, 1]. Show that there exists a sequence { f,,} in L*[0, 1]
such that /fn /f and /|fn| —>/

for every Borel set E in [0,1]. ( All functions are real valued).

Let hy = f;'g and hy = 5L Let f,(x) = hy(z){[sin(27mn)| + sin(2mnx)} —
ho(z){|sin(2mnx)| — sm(27m )} Observe that ¢, (z) = hy(z){|sin(2mnz)| +
sin(2mnax)} and ¢,,(x) = ha(x){|sin(27nz)| — sin(2rnz)} have disjoint supports

and that hy, ha, @1, @ are all non-negative. By previous problem / ) |sin(2mna)| doz —

s

2/hj(:c)d:zc,j = 1,2. Also /hj(x){sin(%mx)}dx — 0,7 = 1,2 by Riemann
B B

Lebesgue Lemma. Hence [ f, = [ (¢, —¥,] — % hi(z)dx — 2 [ ho(x)dx =
=] [z

E
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/f Also, /|fn _/¢ + 1, ]Hg/hl(x)derg/hQ(z)da::%/gwhere

E
the first equahty follows from the fact that ¢,, and w are non-negative and

have disjoint support. Replacing f,, by 5 f, we get the desired result.
Problem 564

Let (X,d) be a compact metric space. A homeomorphism 7' : X — X is
called an expansion if « # y implies d(T"x,T"y) > § for some positive integer
n. Show that this concept does not change if d is replaced by an equivalent
metric.

We prove the equivalence of the following properties of T":

a) T is an expansion

b) there exists a finite open cover {Uy,Us,...,Ur} of X such that z,y €
o0

ﬂ T "A, and A,, € {U,Us,...,U;} for each integer n implies x = y.

c¢) there exists a finite open cover {Uy,Us,...,Ux} of X such that x,y €

ﬂ T—"A, and A, € {Uy,Us,...,Uy} for each integer n implies x = y.

n—=—oo

Suppose a) holds and let § > 0 be as in the definition of an expansion. Let
{U1,Us,...,Ur} be a % open cover for X. Suppose A, € {Uy,Us,...,Us} for

each integer n. If z,y € ﬂ T—"A, then, for each n, Tz, T"y € A,, = U'j
for some j(= j(n)); sine the diameter of U; < § we get d(T"z,T"y) < § for
every n. This implies z = y and show that a) implies c). Obviously, ¢) implies
b). Now let b) hold. The open cover {Uy,Us,...,Ui} of the compact metric
space X has a Lebesgue number ¢. [ This means any set whose diameter is less
than ¢ is contained in one of the sets Uy, Us, ..., Ug]. Now suppose z,y € X and
d(T"z, T"y) < g for every n. Then, for any n, the points 7"z and T"y belong

to some U;, . Let A, =U,,. Then x,y € m T-™A, and hence © = y by b).

in*

n=—oo

In other words x # y implies d(T"z, T"y) > g for some n.
Problem 565 [ Continuation of Problem 564]
Show that if 7" is an expansion so is 72
Remark: the proof works for any 7.

By b) of previous problem there exists a finite open cover {Uj, Us, ..., U}
of X such that x,y € m T "A, and A, € {Uy,Us,...,Us} for each integer

n=—oo
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n implies z = y. Consider the open cover {U; N T~ 'U; : 1 < i,j < k}. If

o0
x,y € ﬂ T72"A, and A, € {U;NT7'U; : 1 <i,j <k} for each integer
n then, for each n, T?"z and T?"y € A,, for some A, € {U; N T_lUj 1<
i,j < k}. Hence either T?"z and T?"y € A, for some A, € {Uy,Us,...,Ux}
and 7%ty T2 +ly € T(A,) and T(A,) € {Uy,Us,...,Ux}. It follows that for
every positive integer m the points Tz and T™y
belong to a set from {Uy, U, ..., Uy }. Hence x = y.

Problem 566

If T is an operator on a Hilbert space H such that sup ||T™| < oo show that
n

n—1
lim % E T™x exists for every x € H.
n— 00 —o

J:

First assume that T = T*. Let M = {zH : Te =z} and N = (I — T)H.

n—1
If x € M then lim %ZT’% = x. Suppose x € N. Then x = y — Ty for
j=0

n—1

some y and lim %ZT"w = lim 1y — T"y] = 0 since sup ||T"|| < oo. It
n—1

follows from this and the hypothesis that nh_)rr;o % Z Trz =0 for allz € N. We
Jj=0

claim that H = M + N. If u is orthogonal to N then < u,z — Tz >= 0 V&

which says © — T*u = 0. Since T' = T* we get Tu = u and u € M. Hence

H =N+ Nt C N+ M. This proves the result when 7 is self adjoint. Since

any bounded operator T can be written as 17 + i7» with 77 and T5 self adjoint

the proof in the general case is complete.

Problem 567 (Lie Product Formula)

Let X be a Banach space and T, S : X — X be bounded linear maps. Show
that
T
e(T+S) = lim {ewen }" in operator norm. [Here eT is defined by e =

n—0o0
o0

> Tk
n=0
Remark: if 7" and S are also self adjoin then it can be shown that
e T+5) = lim {e% e%}”. [ Ref. Reed and Simon, Functional Analysis, p.

295]
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n—1

Let U, = ewex and V,, = e"= . Then \Ur —vr| = Z Uk, — v,)vp-k-1
k=0
n—1
k n—k—1
ST IVl [Un — Va
k=0
n—1
< Zaff”*k“ |U, — Vo] where a, is the maximum of ||U,| and ||V,]|.

k=0
Thus, |U7 = VM| < nap= " [|U, = Vi
<n||Un = Vil el TIHIST since 0‘271 = maX{HUn”n_l ) ”Van_l}a HUn”n_l =
‘ T+S

n—1 _ e n—1
< e(n Z)HTHe( L)HSH S eHTHJFHS” and ||Vn||n71 _ ’
ellT+5I < lITI+ISI Now He%e% —e n H < % for some constant C. [ This
follows by expanding the exponentials in their power series and noting that
T S T+S . .
enen =14+ L O(L), e =1+ L85 4 O(L)]. This gives [|[U? — V2| <
GellTI+IST — 0. Since V;* = e(T+5) we are done.

T S

T+S
enen

e n

IN

Problem 568

If M is a closed subspace of a Banach space X and x € X is the infimum in
|l + M| = inf{||z +y| : y € M} always attained?

Remark: if X is a Hilbert space then the infimum is attained when y =
— Parx where Py is the orthogonal projection with range M.

1/2 1
The answer is NO. Let X = C[0,1] and M = {g € X : /g = /g}
0 1/2
1/2 1
Let f(z) = z. Claim:||f + M|| = . If g € M then /{x + g(z)}dz — /{x +
0 1/2

g(x)}dr = 1 —2 = —%. Hence ; < ||f + g|| (3+3). Taking infimum over g € M
we get || f + M| > ;. Let p be the real measure which has density Iio,1y— 111
w.r.t. Lebesgue measure. Since the norm of p in (C[0,1])* is 1 there exists
{¢,} C C[0,1] such that ¢, || =1 Vn and [¢,du — 1. Let a, = L

A bpdu
and g,(z) = an¢,(z) — z. Then |f+gn|| = |an] — 1 as n — oo. Since
1/2 1 1/2 1
/g"f/g" :an{/gbnf/gbn}dr% :anf¢ndu+% = (0 we see that g, € M
0 1/2 0 1/2
Vn. Since || f + M| < ||f + gn| — jthe claim is proved. Suppose there exists

1/2 1
h € M such that ||f + h|| = 1. Then /{erh(:z:)}d:rf /{x+h(a:)}d:c =—1s0
0 1/2
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1< |f+nl= Z which implies that z + h(z) = 1 on [0,1) and = + h(z) =
on [1,1). This is a contradiction, so || f 4+ M]|| is not attained.

»MH

Problem 569
In a normed linear space show that |z +y|| = |z|| + ||ly|| = |laz +by| =
a |zl +bllyll Va,b = 0.

Assume b < a. Then |laz + by|| = |la(z +y) + (b —a)y]| > a|z+y|| — (a —

b) lyll = a(lizl| + llyll) — (a = b) [ly]
= allzl| +blly] and [az + by|| < alz] + b]ly]l.

Problem 570

[ee]

Let an be an unconditionally convergent series in a Banach space X.
n=1
Define T : [ — X by T({a,}) = Zanmn. Show that T is a well-defined

n=1
bounded linear operator.

The fact that Zanxn converges for each {a,} € [* is standard. See,
n=1
for example, p 458 Lemma 16.1 of Bases In Banach Spaces by Singer. Let

Tn(z*,{an}) = Zan (zy) for z* € X*, N > 1. SlnceZ\m ()| < oo for
n=1

each z* € X* each TN is a bounded operator on X * x> with sup{|Tn (z*, {a,})| :

N

> anw*(xn)‘ < Cmax{[z, [{an}[}

n=1

N > 1} < oo. Uniform Boundedness Principle shows

N

E Andn

n=1

(with C' independent of N). Hence
[T{an}]l < Cl{an}]-

Problem 571

< C|{an}]| VN. This gives

Let X and Y be Banach spaces and T': X — Y be a bounded operator such
that [|Tz|| > c||z|| Vo € X for some constant ¢ > 0. Suppose T,, : X — Y, n >1
be a bounded operators such that || T, — T|| — 0. If each T,, maps X onto Y
show that T also maps X onto Y.

Let y € Y and choose z,, € X such that T,,z,, = y. Note that ||T,z| >
[T]| = (T = T)x]|

> C||$||—* Hx” =3 ||$|| Vz. Now ”xn - xmn < 1 ”T-rn _Tmm” < 1 HTxn - T, an"'
% Tz — T because Tppxm, = Thxn (= y). Hence |Tn — @ || < 1 ||T =T Nl ||+
e 1T = T[ |lzm |- Since [[Thz| > § [|z]| Vo we get [lyl| = [|T5 zall = & 5 lznll
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and [ly|| > §|lzm|. It follows that {z,} is Cauchy. Let z, — z. Now
ly = Ta|| = [|Thwn — Tal| <|[Tn = Tl [l + [[T2n — Tal| — 0 so y € T(X).

Problem 572

Let f € L'(R) and suppose f vanishes outside [—-A, A]. Let g(x /f
Show that M — fin LY(R) as h — 0.

We consider positive values of h. A similar argument can be used when h — 0

through negative values. If f is also continuous then / ’M —f (:c)’ dr =

oo | a+h oo | aih %
Ll fydt — f(a)|de= [ |2 [ [f(t) — f(x))dt|dz
11 _4 /
//If z)| dedt = ;71/t|f z)|dedt if 0 < h < 1.
o ot

Since f is uniformly continuous and + / ldzdt = A+2 < oo it follows that

h
—A—-1t—

L~

/ ‘w — f(z)|dx — 0. For the general case choose ¢ € C.(R) such

dx

aleth)gle) _ lath)=o()
that/|f z)|dz < e. Let o(z /w £)dt. Then/) a(z )

o x+h

/ /{f (t)}dt| do = L /|f (t)|/dxdt<sso/)M—ﬂx)ldm<
t—h — 00

2e + / ‘M - w(w)) dz < 3e if h > 0 is sufficiently small.

— 00

Problem 573

If1<p<oo, fo — fae and {||fall,} is bounded show that f, — f
weakly in LP.

Remarks: the conclusion fails in L': f, = nlg 1y, f = 0. However, if the
boundedness of {|| f,||;} is replaced by the condition || f,||; — [|f||; then {f,}
not only converges weakly, it converges in L'.
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There exists a finite constant C such that | f[|, and [|f|[, do not exceed

C for any n. Fix ¢ € L4. By DCT / lg| — 0asd — 0. Let e > 0

{lgl<s}

and let A = {|g| > ¢} where 0 is chosen such that / lg|? < &. Note

{lgl<o}
that u(A) < oo. There exists B C A such that f,, — f uniformly on B and

w(A\B) < n where 0 < n < dis such that /|g|q < ¢ whenever pu(E) < n. .
B
Let ng be such that n > ng and = € B implies |f,(z) — f(z)| < W.

We now have ’ffngfffg{ﬁ / \fn*f‘|9|+/|fn*f||g|+/|fn*f||g|~
Ae B

A\B

Note that /\fn — fllgl < W/ lg| < e by Holder’s inequality. Next
B B

we note that / Ifn — fllg] <2C( / lg|")}/? < 2Ce. Finally, /|fn = fllgl <

A\B A\B Ae

20(/ lg|")V/e < 2C(&)"4. Tt follows that | [ fug — [ fg| < e+2Ce+2C /Pel/a.
Ac

[ To prove the result in the remark above first note that lim sup / |fnl =
B

limsup{ [ |£2] - / Fal} = [1f] - limint / Fal < [16] - / |f] (by Fatou’s
Ec Ec Ec
Lemma)

= /|f| < lim inf/ | f] which implies that /\fn| — /|f| for every mea-
E E E B

surable set E. Now proceed as in above proof and use the inequality [ |f, — f] <

[isv [i+ [asi+ [ g+ 1510
e Ae B

A\B A\B
Problem 574
Prove that LP is uniformly convex if 1 < p < oo.

This follows immediately from Clarkson inequalities. Find details below.

Lemma 1
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If2<p<oothen|“+b| +|“2b’
a and b.

=~ for any two complex numbers

(The inequality is false for p = 1 (and p = 1.5, and, perhaps, for every
p€l,2)): puta=2b=1).
Assume that p > 2. We have to show that |1+C’p |%|p <

P
le] < 1. In other words we have to show that ‘Hre e 1

+
for 0 <7 <1land0<t<2m Let f(t) = [L+re|” +|1—re]” = (1+
r? + 2rcost)P/2 + (1 +r? — 2rcost)?/2. Then f/(t) < 0for 0 < t < Z (as
seen by an explicit computation of the derivative). If we show that f 0)(=
(1+rP+1-rP) < 2°(1 + %) it would follow that f(t) < 2¢(3 + %)

for 0 < t < Z. This proves the inequalit ’1”6“ ‘p + )146“ P o + 2 for
St< 5. y 2 2 2

rP
2

2 >3
0<r<land0<t<7%. Sincer—te|0,5]for T <t <mand2r—tcl0n]
for m < t < 27 the inequality holds for all ¢ € [0,2x]. It remains to show that
(1+7")p+(177’)p§2p(%+%) for0<r<1andp>2.

For this we begin with the function ¢ (z) = (1 + 2)?~! + (1 — z)P~! —
2P~ ldefined on [0, 1]. Its derivative is non-negative on (0,1) and since (1) = 0
we get (x) <0 for x € [0, 1] Next let ¢(z) = (2 +1)P+ (L —1)P —2771 (L +1).
Then ¢(1) =0 and ¢'(z) = ——Er1(z) < 0. Hence ¢ is increasing, so ¢(z) <0
for z € (0,1]. This says (L + 1)” + (£ —1)? < 2771(L 4+ 1) which is what we
wanted to prove.

Lemma 2

If 1 <p<2andg= ;Lythen |[a+b" +|a—b* < 2(|a]” + b[P)5T for any
two complex numbers a and b.

As in the proof of Lemma 1 we can reduce this to the following inequality:

(142 )7+(1-2)? <2(1+2P)/P=Dfor1 <p<2and0 < z < 1. [ Equality
holds for p = 2 as well as for x € {0, 1}]. This is equivalent to the following:

(1415974 (1= 1557 < 2{1+ (5H)P}/#=Y for 0 < t < 1. We shall show
that

(1+s9)P~1 < 2{(14s)P+(1—s5)P} for 0 < s < 1. It is easy to see that this last
inequality gives the previous one. Consider ${(1+s )P+ (1—s)P} — (1+ 5771
This function has a (uniformly convergent) power series expansion in s and the

coefficient of s*
p(p*1)~~~(p*(2k*1))82k_ p(pfl)m(p*('?k*l))sq(zkfl) _ p(p=1)...(p=2k) 2kq which

2R 2k—1)! (25!
2k—p
52k 2=P)3=p)...(2k—p) 2k (p—1) 1.q(2k—1)—2k | p—1 2kq—2k 52k 2=P)3=p)...(2k—p) 2k 1-s =
e ) {ehep 5 e BT s z:_plp -

1= Sp 1}>Obecause 1=

that each term in the power series is non-negative and so is the sum.

~ is a decreasing function of a on (0, 00). This proves

Lemma 3
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If f is a non-negative function in L? and g is a non-negative function in L?
where 0 < p < 1,¢ = L5 then [ fg> ([ f)Y?([ g9)"/4 provided [ g2 > 0.

Note that g(z) > 0 ae.. Let r = 1% and ¢, = g V", 4y, = g'/7fU".
Then [P = [¢i0y < ([)Y7([¢5)Y5 where s = =~ = ——. Hence
192 2 1 r—1 —p
P ([ TS5 )P i > P 1/27—1 =
[7 < FaP(f o™ This says [ fa > (] )0l

(] )] gyl
Lemma 4

If0 <p<1and f and g are non-negative functions in LP then f 4 g € L?
and |[f +gll, = [ £1, + llgll,,

Since | f 4 g|” < 2P{[f[" +|g|"} we get f+g€Llp Now f{f+g}p—ff{fl+
g Jolf + gl = (SR + )T+ ([ S+ )T
Hence ([ fP)V7 + ([ ")V < ([(f +9)")"* p—(ﬂf+m)“?

Lemma 5

q q
Clarkson inequality: H%HP + H%Hp < GUFIE + 3 g2y =D i 1 <
p<2,q= p%l and f,g € LP.

q
We have H’% by Lemma 4

|l

(because 0 < p —1 < 1). Hence Hf+g
{3 ||ng + 3 HQHZ}I/(’)*U by Lemma 2.

sl

p—1

q
+|5

w5,

< H’Hg

I, <

Lemma 6
Carkson inequality for 2 < p < oo :

”f—i—g

e

< 3 UFlp + 5 gl Vg € LP
This is immediate from Lemma 1.
Problem 575

Let 1 <p <oo,f, € LP(n=1,2,...), f € LP, f,, — f weakly and ||fn||p —
[ f1l,,- Show that || f. — f[[, — 0.

This is a general fact: if X is a uniformly convex normed linear space,
xn, — « weakly and ||z,| — || then ||z, — x| — 0. [ L? is uniformly convex
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by Problem 574]. For a proof of this general fact note that there is nothing
to prove if & = 0. Otherwise ||x,|| > 0 for n sufficiently large, say n > n,
and we can define {yn}n>n, by Yn = mxn. Let y = ”71”],‘ Then y, — y
weakly. Claim:||y, —y|| — 0. By uniform convexity it suffices to show that
llyn + yll — 2. Suppose there is a sequence n; — oo such that Hynj + yH <2-0
V4 with § > 0. Choose z* € X* such that ||z*|| = 1 and 2*(y) = 1. Then
12" (yn, + 9| < [Jym, +y|| <2—6. But a*(yn,) — z*(y) = 1s0 2™ (yn, +y) — 2,
a contradiction.

Problem 576

Show that f, € L'(n =1,2,...), f € L', fo — [ weakly and || f. [, — [ f],
does not imply || f,, — f]l; — 0.

Let p be the normalized Lebesgue measure on [0, 27], f,(x) = 1 + sinnx
and f(z) = 1. Then f, — f by Riemann Lebesgue Lemma. |f, — f||; =

2
i/ |sin(nz)|dz = 2Vn
0

Problem 577

Let f be locally integrable on R and [ |f(z)|” dz = co where 1 < p < oo.
Show that [ f(z)g(z)dz = 0 for all g in some dense subset of LY(R) where
q= 5.

Rpemark: of course, the set above is not dense if f is a non-zero element of
Li(R).

Let M be the space of all functions g in L9(R) such that [ fg exists and
has the value 0. If this linear space is not dense in L9(R) then there exists
h € LP(R)\{0} such that [gh = 0 for all g € M. Let z and y be common

y+e T+e
Lebesgue points of f and h. Let g = /f Izcaye) + /f (y—e,y+e)-
y+ r+e z+e
Then g € L9 and [ fg = 0. Hence 0 = [ fh = / / /h)(/f)

—(
y—e T—¢ y—e T—¢
Dividing by 4¢? and letting ¢ — 0 we get f(y)h(z) = h(y)f(x). It follows that
h = cf a.e. for some constant c. Since h # 0 it follows that ¢ # 0 and since
h € LP(R) we get f € LP(R), a contradiction.

Problem 578

If Z |a,|” = co where 1 < p < oo show that the collection of all sequences

{bn} in 17 where q = p%l such that Y a,b, converges to 0 is dense in 9.
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This is similar to previous problem. Just replace intervals in the proof above
by singletons.

Problem 579
Ifl1<p<oo,f,— fin LP and f,, — g a.e. show that f =g a.e.

We first observe that {f,,} is bounded in the norm of L? and hence [ |g|” <
liminf [|f,|” < oco. If possible let u{z : |f(z) —g(z)| > 6} > 0 for some
0>0. Let 0 < e < pf{x : |f(z) —g(z)| > 6}. By Egoroft’s Theorem applied
to the restriction of p to {x : |f(z) — g(z)| > ¢} ( which is a finite measure)
there exists B C {z : |f(z) — g(x)| > 4} such that f,, — g uniformly on B

and p({z : |f(z) —g(z)| > 6}\B) < €. But then /g = lim/fn = /f for

E E E
every measurable set F C B. It follows that f = g a.e. on B. Hence u{x :
|f(z) —g(z)| >} = p({z : |f(z) — g(x)] > 6}\B) < € contradicting the choice
of e.

Problem 580

If1 <p<ooand {fn} C{f€LP(m):|fll, <1} ( where m is Lebesgue
measure on (0,1)) show that there is a subsequence of {f,} which converges
weakly.

Remark: this is false for p =1 : let f,, = 'I’LI(OMIT). If f,, — h weakly then
J hg = ¢(0) for any continuous function g on [0,1]. In particular [ zh(z)g(z) =
0 for every continuous function g which implies zh(z) = 0 a.e.. However f h =
lim [ fn, = 1.

x

Claim: if {f,} is a bounded sequence in LP(m) and lim [ f,, exists for every
n—0oo

0
x in a dense subset of (0,1) then {f,} converges weakly. To see this note that

the unit ball of LP(m) is weakly compact and metrizable by Banach Aloaglu

Theorem and separability of L?(m) where ¢ = ﬁ. Hence any subsequence of

{fn} has a further subsequence converging weakly to some function g € L4(m).
x x
This implies that lim / g= HILH;O / fn, so g does not depend on the subsequence
we started with. Thig proves thg claim. Now given {f,} as in the statement
x
there is, by a diagonal procedure, a subsequence {f, } such that nlin;o / In;
0

exists for every rational number z. It follows by the claim that {f,,} converges
weakly in LP(m).
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Problem 581

If X is a reflexive Banach space, Y is a normed linear space and T : X — Y
is a bounded operator show that {T'z : ||z|| < 1} is closed in Y.

This requires a theorem of Eberlein: the closed unit ball of X is weakly
sequentially compact if X is reflexive. Thus, |z, || < 1,Tz, — y implies z,;, —
r weakly for some n; T oo and some z € X. Hence T'z,;, — Tz weakly, so
y =Tz e {Tx:|z| < 1} because |z* ()| = lim |z (z,,)| < [|*|| Va*.

Problem 582

Let {z,} be an orthonormal sequence in a Hilbert space H. Show that

o0 o0
an converges in the norm iff Z < Zn,y > converges for every y € H iff

n=1 n=1

o0
> lznll* < oo
n=1

Suppose Z < Tp,y > converges Vy. Define T, : H — K ( K being

n=1
the scalar field) by T,(y) = Z < zp,y >=< Z:ck,y > . Then ||T,,| =

k=1 k=1

n
Z ||.’L’kH2 by orthogonality. By Uniform Boundedness Principle
k=1

k=1

o0
sup{||T.|| : » > 1} < co. Hence Z [ ,]|> < co. Rest is elementary.

n=1
Problem 583
Show that the sequence {%} converges to 0 weakly in L2(0,1).

[sin x|

b
We claim that sup{/ SN gy : 0 < a < b < 0o} < oco. For this observe
a

2m(14+1)
that if 27§ < a < 27(5 4+ 1) and 27k < b < 27(k + 1) then / SN ]y = ()

[sin z|
27l
b

for every [ between [ + 1 and k£ — 1. Hence / SILT 72 is the sum of inte-

[sin z|

a
over two intervals, each of which has length at most 27. It

sin &
|sin z|

grals of
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b b
follows that sup{/ Sine gy ;0 < a < b < oo} <27 Now /de =

[sin z| [sin(27nz)|
2mnb 1 ¢
i / I:E%Idx — 0. Tt follows that /\:;1%;7:23\ (x)dx — 0 for every step
2mna 0

function f. The fact that step fuctions form a dense subset of L?(0,1) com-
pletes the proof.

Problem 584

Let X and Y be Banach spaces, T': X — Y and S* : Y* — X* linear
and y*(T'(z)) = S(y*)(z) Vz € X,Vy* € Y*. Show that T and S are bounded
operators and S = T*.

For ||y*|| < 1 let Ty+(z) = y*(Tz)(= S(y*)(x)). Then T, is a continu-
ous linear functional on X with [|T,+|| < |[S(y*)||. For fixed € X we have
[Ty« (2)| = |y*(T'x)| < ||Tz||. By Uniform Boundedness Principle it follows that
sup{|Ty-(z)| : [ly*[| < 1, [Jz[| <1} < oo which implies sup{||Tz[| : ||z[| < 1} <
0o. Hence T is bounded. Similarly S is also bounded. By definition of adjoints
S =T

Problem 585

A book on Functional Analysis has an exercise which says that if A; and
Ag are self adjoint operators, A; > A and B > 0 then A1B > A;B. Give a
counterexample.

Let A, and B be the operators on C2? given by the matrices ( ? 411 )

1 —
and < —3 13 ) Then < Ay(z,y), (z,y) >= 2{(z + 3v)* + {¥°} and <
B(x,y), (x,y) >= (v — 3y)? + y>. If Ay = 0 then the hypothesis is satisfied.

-1 4 o o .
11 37 > which is not positive definite
since < (41 B)(1,0),(1,0) >= —1 < 0. (The conclusion would have been true if
there was an added hypothsis that B commutes with A; — As).

However, A; B is given by the matrix (

Problem 586
Give an example of a non-empty closed set in a Hilbert space which has no
element of minimal norm

Solution: {apey, : n > 1} where a,, — 1 and {e,, } is orhonormal.

Problem 587
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Show that T' € B(H) (H a Hilbert space),7? = T and ||T|| < 1 imply
T* =T (so T is an orthogonal projection).

First recall that | T7*|| = ||T|| : |T7*]| = sup{< T*z,y >: ||lz|| <1, |ly|| <1} =
sup{< , Ty >: [|lz[ <1, |ly| < 1} = |[T].

If Tx = z then |T*z — z||* = |T*z|* + |z|* — 2Re < T*z, 2z >= | T*z||* +
|z|> = 2Re < z, Tz >

< |lzl* + |z|* = 2|jz||* = 0. Thus, Tz = z implies T*z = 2. Since T2 =T
this gives T*(Txz) = Tz Vx. Hence T*T = T and, taking adjoints on both sides,
we get T*T =T*. Thus, T* =1T.

Problem 588

Let M be the space of all complex Borel measures on [0,1]. Is the set
{p € M : ||u]| = 1} a closed set in teh weak* topology of M = (C[0,1])*? |
lleell = || ([0, 1]) is the total variation norm of u.

No! Let dpu,, = § sin(2mnz)dx and p = 0. Then ||, || = 1¥n and p,, — p in
the weak* topology ( by Riemann Lebesgue Lemma).

Next four problems (from Bourbaki’s "Integration I") are related to each
other. [ Some of these appeared earlier in Problems 357-358 but with slightly
different proofs]

Problem 589
If a1, as, ..., an are distinct real numbers show that the functions |z — a;|,1 <
i < N are lineraly independent elements of C[0, 1].

k
Suppose |z — a| = ij |z — a;| with b; € R,1 < j <k and a,a1,as2...,an
j=1
distinct. We show that at least one of the coefficients vanishes. The proof can
then be completed using induction on k. For x large we have

k k
rT—a= Z bj(x —a;). Hence Z b; = 1. Without loss of generality we may
j=1 j=1
suppose a1 < ag < ... < ar. We consider three cases:

a) a1 < ag < ... < aj_1 <a<a; <..<ay for some i

b)a<a; <az <. <ag

c)ay <..<ap<a

k
In case a) take z € (a1,a2) to get a —x = ij(aj —x) + bi(x — ay). This
j=2
k
implies Zb] =1-+b;s0b =0.
j=2
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k

In case b) let = € (a,a1). We get z —a = ij — x) which gives the
Jj=1
k
contradiction Z bj = —
j=1
k

In case c) let = € (ag,a). We have a —z = Z b;j(z — a;) which again leads
Jj=1
k

to the contradiction Z bj = —1.
j=1

Problem 590 [ Continuation of Problem 589]

Show that we cannot express |z —y| (0 <2 < 1,0 <y < 1) as a finite sum
of functions of the type f(z)g(y) with f and g continuous.

Suppose |z —y| = Zfz )for 0 <z < 1,0 <y <1 with each f;
and each g; contmuous Con31der k+ 1 distinct numbers y1, ya, ..., Yp+1 in [0, 1].

Then |z —y;| = Z fi(z)gi(y;) Yx. By elementary linear algebra the system

=1
k+1
of equations Z/\jgi(yj) = 0 for 1 < ¢ < k has a non-trivial solution. This
j=1
k+1 k+1 k+1
gives ZA |z —y;] = Z/\ Zfz )gi(y;) Z{Z/\jgl i) Hi(z) = 0 Vo
= i=1 j=1

and thls contradlcts the hnear 1ndependence of {|z —y;|: 1 < j < k+1} proved
in Problem 589.

Problem 591 [ Continuation of Problem 590]

If pu is a complex Borel measure on [0, 1] such that [ |z —y|du(z) =0 Vy €
[0, 1] show that p = 0.

Remark: an equivalent statement is: {|z —y| : 0 < y < 1} spans a dense
subspace of C[0,1].

A corollary is the following: if X, X7, X5... are random variables with values
in [0,1) and E |X,, —a] — E|X — a| Ya then X,, — X weakly

Let 0 < y < 1 and suppose |p|{y} = 0. For |h| sufficiently small we have 0 =
f\1*y*h\d#(ﬂ?]z*f|“7*y\d#(r) = [ ¢(x,y, h)du(x) where ¢(x,y,h) = |iv*y*hh\*\1*y| )
Note that |¢(z,y,h)| < 1 and ¢(x,y,h) — Iy — Iy a-e. [p]. By DCT we
get p[0,y] — u(y, 1] = 0. Note that if we put y = 0 in the hypothesis we get
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[ xzdu(z) =0 and if we put y = 1 we get p[0,1] — [@du(z) = 0. It follows that
©[0,1] = 0. Combining this with p[0,y] = u(y7 1] we get M[O,y] = u(y,1] =0
Yy such that |u|{y} = 0. There are at most a countable number of points y
such that |p|{y} > 0 and the function u[0,y] is right continuous, so we get
p[0,y] = 0 Vy € (0,1). This implies that p is concentrated on {1}; since
[z —y|lddi(x) = |1 —y| # 0 (for any y < 1) we see that p must be the zero
measure.

Problem 592 [ Continuation of Problem 591]

Consider the map p — ¢, where ¢,(y) = [ |z —y|du(x) from the space of
complex Borel mesaures on [0, 1] into C[0,1]. Show that this is a one-to-one
continuous linear map with dense range whose inverse is not continuous. Also
show that the range is a proper subset of C]0, 1].

The second part follows from the first by Open Mapping Theorem. We have
already shown (in Problem 591) that the linear map y — ¢,, is one-to-one. Note
that E — y‘ — |y| uniformly for 0 <y < 1. Hence ¢5, — ¢5, in C[0,1]. Since

show that the range is dense we show that [ b (y)dv(y) = 0 Vu implies v = 0.
Taking degenerate measures for p we see that [|z —y|dr(y) = 0 Va which
implies v = 0 by Porblem 591.

01 — 60H = 2 Vn we see that the inverse of above map is not continuous. To

Problem 593

Let 0 < p < 1 and X be the space LP(u) where u is Lebesgue measure on
(0,1). Metrize X by d(f,g) = [|f —g|’. I V is any neighbourhood of 0 show
that the convex hull of V' equals X. Use this to show that there is no non-zero
continuous linear functional on X.

Let f € X. The function z — / |f(y)[” dy is continuous. Hence there exists
€ (0,1) such that /|f Wy = /\f )Wdy. Let fi =2fIq) and fo =
2l Then L35 = [ Akso [P = / P dy = 2 / P dy

Similarly, [ |fa" =2r~1 / |f(y)[” dy. We have expressed f as a convex combi-
0
nation of functions f; and f, such that d(f;,0) = 2P~1d(f,0). Repeating this

we can express f as a convex combination of a finite number of elements whose
distance from 0 is as small as we want. ( Note that p — 1 < 0). This proves the
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first part and the second part is immediate: {f : |[*(f)| < 1} is a convex neigh-
bourhood of 0 for any continuous linear functional * on X and so |z*(nf)| <1
Vn Vf sox*=0.

Problem 594

Let f : R — R be measurable and 1 < p,q < oco. Find a necessary and
suffcient condition that f o g € LY(R) for every g € LP(R).

The condition is |f(z)| < c¢|z/”/? Vo € R for some constant ¢ € (0,00).
Sufficiency is obvious. Necessity is proved by contradiction. Suppose |f(z,)| >

o
n |xn|p/q Vn. Let g = Z xnla, where Al s are disjoint Borel sets with m(A4,,) =

n=2

W ifg > 1land m(4,) = W ifg=1. [Ifz,, = 0 then m(A4,) can
be arbitrary]. Then [ |g|” = Z L ifg>1and [[g] = Z m ifg=1.
n=2 n=2

Thus g € LP. But fog ¢ LY(R) because [|fog|! = Z |f(zn)|"m(An) >
n=2

an |z, [P m(A,,) which is Z 1=o00if ¢ > 1 and Z m = 0.
n=2 n=2 n=2

Problem 595
Prove or disprove: the sequence {sinnz} converges to 0 in measure on the
space (0,1) with Lebesgue measure.
1
If {sinnz} converges to 0 in measure then DCT tells us that / [sinnz| dx —
0

0. [ Indeed, every subsequence of {sinnz} has a further subsequence converg-
1 2km

n
ing a.e. to 0]. However /|sinnm|dw = %/\siny|dy > %/ |siny|dy where
0 0

0
1 k 2jm k 27
k = [3=]. Hence /|sinnac|dx > %Z / Isiny|dy = %Z/\sinmdy =
0 1=l 1y i=17%
%[%]H%asnﬂoo.

Problem 596
Let f,g:[0,1] — R be continuous on [0, 1] and differentiable on (0,1). Show

FO-10) gD -g0) ) _ o
that det ( £0) 70 ) =0 fo € (0,1).
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Apply Mean Value Theorem to the function det ( J]:(ac) : f((())) g(z) — g(0)

Problem 597

For a function f : (0,00) — R show that convexity of zf(z) and f() are
equivalent.

This is easy if we use the fact that a function g : (0, 00) — R is convex if and
only if there exist sequences {a,}, {b,} such that g(z) = sup{anz +b, : n =
1,2,..} V.

Problem 598

Prove that a function f : [a,b] — R is convex if and only if sup{f(z) + az :
a <z < B} =max{f(a)+ aq, f(f) + aB} whenever a < a <  <b.

If f is convex we can write f(z)as sup{a,z+b, : n = 1,2,...} and affine maps
satisfy the property in the statement which implies that f itself has this property.
Conversely, suppose sup{ f(z) + az : a < z < f} = max{f(«a) + aa, f(B) + af8}

whenever a < a < 8 < b. Let a = 7%' Then f(a) + ac = f(B) + af
and hence f(z) + az < f(a) + aa for a < z < 8. Thus f(xsi:(’;(a) < f(Bg:i(a)
for « < x < 3. Since o and f are arbitrary (subject to a < a < § < b) this says
f(xl)::i(a) < f(’gﬁ):i(a) whenever « < z < 8 with «, 8,z € [a,b]. In other words,

f(z) < g:zf(oz) + 5= f(B) whenever a <z < . Hence f is convex.

Problem 599
If f is convex on [0,00) show that f(z) — xf/(x+) is decreasing.

We have f(z2) — f(z1) = /f’(a:+)dx < fzo+)(x2 — x1) < zof (2t) —
1 f'(z1+) for 0 < 1 < @o. "
Problem 600

Let X and Y be jointly normal each having mean 0. Show that cos(n P{XY <
0}) = p(X,Y) ( the correlation coefficient between X and Y.

Without loss of generality we may suppose that X and Y both have variance
1. We have to show that EXY = cos(nP{XY < 0}). Let « = EXY, U = X
and V = aX +bY where a = —ba and b*{1—a?} = 1. [ This is not possible when
a = +1. However, if @« = +1 then, by the condition for equality in Holder’s
inequality) we get Y = ¢X for some real number ¢ which must be +1 and the re-

sult is obvious in this case]. Note that |a| < 1 so we can take b = \/1£7 and a =
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— 2. Now U and V are i.id. N(0,1). Hence P{XY < 0} = P{UYEY <

0} = P{UV < aU?%} = / / L e="/2¢7"/2dsdt. Using polar coordinates

{st<as?}
oo

we get P{XY < 0} = / /%e’ﬁ/zrdrd@ = =m{0 € [0,2n] :
{sin 6 cos f<acos? 6} 0
{sinfcos® < acos?6}}. Hence cos(rP{XY < 0}) = cos{im{6 € [0,2n] :
{sinfcosf < acos?6}}). Splitting [0,27] into the parts with cosf > 0 and
cosf < 0 we get sm{f# € [0,27] : {sinfcosf < acos’}} = m{f € [0,2n] :
{tanf < a}}. What remains is to show that cos(m{f € [0,27] : {tanf <
a}}) = a. Using the fact that cos(mP{XY > 0}) = cos(m — nP{XY < 0}) =
—cos(mrP{XY < 0}) we see that the original result does not change of we replace
X by —X. Hence there is no loss of generality in assuming that o > 0. (in which
case a < 0). m{0 € [-m, 7] : {tand < a} = 7 — 20y where 0y = tan~!(—a). [ To
see this split [—m, 7] into [—m, —7/2], [-7/2,0], [0, 7/2] and [r/2, 7]’; there is no
contribution from second and fourth intervals; contributions from the first and
the third are each equal to 5 —60p]. All that remains is to show that cos(5 —6p) =

. _ . o . _ 1 _ 1
a or sinfy = a. This is easy: sinfly = /1 Tran?o; = T T

Problem 601

Let f, f1, f2, ... be convex functions on [0, 1] such that f,(z) — f(z) Vz €
[0,1]. Show that f,, — f uniformly on [0, 1].

Remark: the argument below shows that if we f) s are convex, {f,(0)} is
bounded above, {f,(1)} is bounded above and {f,(3)} is bounded below then
{fn} is equicontinous.

C

Fix 0 < ¢ < 1. We have f,(c) = f.(0) + /gn(t)dt where g, (t) = f} (t+).

0

Since g, is increasing we have f,(c) < f,(0) + cgn(c). Hence there exists a
positive number M such that g,(c) > —M Vn. On [¢, 1] we can write f,(z) =
sup{an;x+by; : j > 1} where each ay; is g, (t) for some ¢ in [c, 1]. It follows that
anj > —M ¥n,j. Now sup{by; : j > 1} and sup{an;+by; : j > 1} are both finite
because {f,(0)} and {f,(1)} are bounded. It follows that sup{b,; : j > 1} < 00
and sup{an,; : j > 1} < 0o. Let z,y € [¢,1]. Then ap;x + byj = {an;y + by} +
anj(x —y) < fulz) + My |z —y| where My = sup{|an,;| : n,j > 1}. Taking
supremum over j we get f,(z) < fn(y) + My |z —y|. It follows from this that
|[fu(z) = fr(y)| < My |z — y| Va,y, ¥n. We conclude that {f,} is equicontinuous
and f, — f uniformly on [c, 1]. Applying this result to f,,(1 — ) and f(1 — x)
we see that f, — f uniformly on [0,1 — ¢]. Take ¢ = % to complete the proof.

Problem 602
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Let f be convex in [a,b]. Show that there exists a sequence of C*° convex
functions converging uniformly to f.

flleat)ifa<z<bd
Let g(x) = ¢ f'(b—) if b <z < oo . Replacing f by f(x)— f'(a+)z we may
fllat)ifz<a
suppose f’(a+) = 0. Note that g is a bounded increasing function on R. Let

o(z) = fa)+ /g(t)dt. Then ¢ is convex on R and |¢(x)| < a+8|z| (z € R) for
some o, 3 > 0. Let ¢, (z) = /5= [ ¢(z —y)e_%yzdy. Clearly, ¢,, is well defined
and convex on R. We have |¢,,(z) — ¢(z)| < /3= [|o(xz —y) — ¢(z)] e~ 5 dy.
Let € > 0. Since ¢ is (Lipschitz, hence) uniformly continuous we can find § > 0

such that [¢(z — y) — ¢(z)| < if[y| < 4. Hence /5= / lo(z —y) — d(z)| e ¥ dy <

{ly|<d}
e. Now /5= / \¢(x—y)—¢(x)|e*%y2dy < Vo / [@ + Blz| + a+
{ly|>d} {ly|>6}

Blz —ylle 3V dy
<V / [a1+ B, |y|]e” 8¥" dy for some finite constants if z € [a,b]. Since

{ly|=4}

E [ wasblea = & [ e |Ee i - o
{ly|=6} {lu|=v/nd}
as n — oo we see that ¢, — ¢ uniformly on [a,b]. But ¢ = f on [a,b)].
Hence, it remains only to show that each ¢, is a C°° function. Note that
bp(x) = /2= [ d(y)e= 5@’ dy. Repeated use of DCT together with the esti-
mate |¢(z)| < a + 5 |x| shows that ¢,, is indeed a C*° function.

Problem 603.

In previous problem show that ¢/, s can be modified to be a decreasing/increasing
sequence.

Given € > 0 there exist a C* convex functions v,, such that |f(z) — ¢, (z)| <

oo
g/2" ¥ € [a,b],Yn. Let ¢,,(z) = 1,,(v) + &, where 1 = > _[|th, — ¢b,,4,]| and
j=1
En — Ept1 = Hwn - wn—HH < 23% ( the norm is, of course, the supremum
norm). Then {e,} strictly decreases to 0. Clearly, ¢,, is convex and C*°. Also
6, — f uniformly and G,y = Uiy +En — [0 — s || < ¥ +En = 0, 50
{®,,} decreases to f uniformly. A similar argument can be given to produce C'*
convex functions increasing uniformly to f.
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Problem 604

Give an example of a sequence of Lipschitz functions on [0,1] converging
uniformly whose limit is not Lipschitz.

fn(x) = min{nz, \/z} with limit \/z.
Problem 605

Prove or disprove: if f, f1, fa, ... are C*° functions on R with compact support
and f, — f uniformly on R then f, — f in L*(R).

False: there exist C*° functions f, with compact support such that f, = %
for —-n < 2 < mand 0 < f,(z) < L Vn,Vz. Clearly, f, — 0 uniformly and

/|fn_0‘2/fn:277:2

Problem 606

Prove the following:

a) If p is a positive finite measure, f is a complex valued integrable function
on R with U fdu} = [|f|dp then there exists a real constant a and a non-
negative L!(x) function g such that f = e'%g a.e. [u].

b) If u is a complex Borel measure on R, f is a complex valued integrable
function on R with | [ fdu| = [ |f|d|u| then there exists a real constant a such

that f¢ = e |f| a.e. [|u|] where ¢ = %.
¢) If p4 is a complex Borel measure on R with U fdu| = [|f|d|p| for every
f € C.(R) then u = ¢d, for some real number o and some ¢ € S*.

a) Let [ fdu = re'® with r > 0 and a real. Then [|f|duy=1r= [e " fdu
so [{|fl-Ree “f}du = 0. Since |f| —Ree " f >0 we get |f| —Ree " f =0
a.e. [p]. This implies Ime™ f = 0 a.e. [u] and hence f = €!®|f] a.e. [u].

b). We have | [ fodv| = [ |f|dv where v = |u|. By part a) and the fact that
|| =1 a.e. [v] we get fo = e'®g and g = | f] necessarily so f¢ = €' |f| a.e. [v].

c) Since C.(R) is dense in L'(|u|) the equation |[ fdu| = [|f|d|u| holds
for every f € L'(|u|). Taking f = 1 we get (from part b)) ¢ = €' a.e. [v].
It follows that dy = cd|p| where ¢ = ¢'®. We now have | fdv| = [|f|dv for
every f € L'(v) and, by part a), f = €' |f| a.e. [v] for every f € L'(v) (the
real constant a possibly depending on f). Let A and B be disjoint Borel sets.
Taking f to be Iy — Ip we get v(A) = 0 or v(B) = 0. The only positive finite
Borel measures v on R such that v(A) = 0 or v(B) = 0 whenever A and B
are disjoint Borel sets are the degenerate measures: for each positive integer n
there is a unique integer i, such that v([27%, 22)) > 0. Since [271, ) and

=1 i . 2 ooben
[, 524h) must intersect we must have [“5Ei=, s24L) C [f=d 1o Hence
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the intervals [’g;l, %],n = 1,2,... form a decreasing sequence of closed sets
with diameters tending to 0. If a is their common point then v = d, because
any point & # « belongs to a dyadic interval I with v(I) = 0. We have proved

that u = ¢d, where |c| =1 and « is real.
Problem 607
Let fn : [0,27] — R satisfy the inequalities |f,(x) — fn(y)| < M |z — y|
2m

Vz,y € [0,27], Vn with M independent of n. Show that /fn(x){sin nx}dr — 0
0

27
asn — oo. If {f,} is uniformly bounded prove that /¢(m)fn(x){sin nxtdr — 0
0

as n — oo for every ¢ € L([0,27]).

Each f,, is absolutely continuous, hence differentiable a.e.. Let g,(z) =

w. Then g, is absolutely continuous ( because product of two ab-

solutely continuous functions on [0, 27| is absolutely continuous). Hence 0 =
2m 2m

9 (27) — g (0) = / g (t)dt = / fat) costnt) =nfu(t)sin(nh) g Note that |f4] < M
0 0
21 27

a.e. by hypothesis and hence /Wcﬁ — 0. It follows that /W(ﬁ —
0 0
0, as required. For the second part let € > 0 and choose a continuously differen-
2T 27
tiable fucntion ¢ such that [ |¢ — 9| < e. Then /¢(x)fn(a:){sm nxtdr — /w(x)fn(x){bm nx}dx| <

0 0
e8up || full - Since [¢(2) fn(x) — P(y) fo ()] < |[9(2) (@) = YY) fu (@) |+ [0 (Y) o (@) = P(y) fu(y)] <
M, |z —y| Yo,y € [0, 2n], Vn with M;independent of n (M = {(sup || fnll.) ||1ZJ'||OO+

Y]l ..} M will do) we can apply the first case with {f,} replaced by {¢f,}
2

T 27
to /w(w)fn(w){sinnx}dx — 0. It follows that /¢(x)fn(x){sinnx}dx <
0 0

2
esup || fnll + /w(x)fn(x){sinna:}dx < (1 +sup || full) for n sufficently
0

large.

Alternative proof of the first part: by Arzela - Ascoli Theorem there is
a subsequence {fg;} of {fr} converging uniformly to a continuous function

2m 2
f. Now /fkj(x){sinij}dx—/f(x){sink‘jx}dx — 0 as j — oo. Since
0 0
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2m 2m
/f(w){sin kjx}dr — 0 too we conclude that /fk]. (x){sinkjz}dz — 0. Ar-
0 0

2

guing with subsequences we conclude that / fo(x){sinnz}dr — 0 as n — oo.
0

Problem 608

Let f : R — R be a bounded function. If G is closed show that f is
continuous. More generally show that if f : R — R has closed graph then f
is continuous at z if and only if it is bounded in some neighbourhood of z.
Conclude that the set of points of continuity of a function with closed graph is
necessarily open.

Remark: in general the set of points of continuity of any function f : R — R
is a Gs.

First part: if it is not true that lim f(y) = f(z) then there exists a sequence
y—z
{zn} converging to x such that {f(z,)} does not converge to f(z) and hence

there is a limit point y of this sequence with y # f(z). Let
f(@n,) — y. Since {(zn,, f(zn,)} € Gy and {(zn,, f(zn,)} — (2,9) in

R? we must have y = f(x), a contradiction. For the second part repeat above
argumet under the assumtion that f is bounded in some neighborhood of .
The last part is obvious.

Problem 609

Show that there is a function f : R — R which has closed graph and un-
countably many discontinuities.

Remark: such a function cannot be bounded by Problem 608.

1 .

OifzeC
y with x,, ¢ C V¥n then m — y and hence {d(z,,C)} does not tend to
0. Since d(x,,C) — d(x,C) this implies x ¢ C. Hence d(wic) — d(a:lC)
and so y = lim f(z,) = lim d(xi o = d(le) = f(x). If z, € C Vn then
y = lim f(z,) = 0,2 € C and f(x) = 0 soy = f(x). Either z,, ¢ C along a
subsequence or z, € C along a subsequence. It follows that y = f(x) in all
cases, so Gy is closed. Claim: f is not continuous at any point of C: if x € C
there is a sequence {z,} in R\C converging to z. If f is continuous at x then

m — 0 and d(z,,C) — oo which is absurd.

Let C be the Cantor set, f(z) = { Iz, — xand f(z,) —
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Problem 610

Show that if a function f : R — R has closed graph then the points of
discontinuity is a closed set with empty interior; conversely any closed set with
empty interior is the set of discontinuity points of a function with closed graph.

Remark: if f : R — R has closed graph then it has at least one point of
continuity since the set points of discontinuity cannot be R.

The second part follows by replacing the Cantor set C' in previous problem
by the given closed set with empty interior. For the first part note that the set
D of discontinuity points is closed by the last part of Problem 608. It remains
to show that D has no interior. Suppose a < b and [a,b] C D. Then [a,b] C

U{x € [a,b] : |f(z)| < n}. Claim:{z € [a,b] : |f(x)] < n} is closed for each n.

n

Indeed, if | f(x)| < n and 2 — z then, for any limit point y of {f(zx)} there is
a subsequence {f(z,;)} converging to y. Since Gy is closed we get (z,y) € G
so y = f(x). We have proved that f(xy) — f(z) so |f(z)| < n, proving the
claim. By Baire Category Theorem we conclude that {x € [a,b] : |f(z)| < n}
has non-empty interior for some n. But then f is continuous at any point of the
interior ( because f is bounded in a neighbourhood of such a point; see second
part of Problem 608). We have arrived at a contradiction since [a,b] C D. The
proof is complete.

Problem 611

Give an example of a ¢ - finite Borel measure o on R such that p([a, b]) = co
whenever a < b.

Let {r,} be an enumeration of rationals, f(z) = %I(O’l)(x) and g(z) =

Z 5= f(z + 7). Note that /Z = f(x 4 rp)de = Z o [ [z 4 rp)de =
n=1 n=1

(o)
Z 77—t < oo and hence g(z) < oo a.e.. Let u(E) = /gQ(a:)dm. Since pf{zx :
n=1 E

|z] < m,g(x) <n} < ooVn it follows that u is o— finite. If @ < b then u([a,b]) =
b b b

/(Z %f(x + Tn))Qdm > % (f(:]? + rn))de = % ﬁ]’0<z+rn<1(x)dw =
n=1

a a
b+r,
2% %Io<y<1(33)dy = oo if n is chosen such that a +r, < 0 < b+ 7, or
a+ry,
Ty € (—b, —a).

Problem 612

Let f: R — C be mesurable and bounded on compact sets with f(z + y) =
f(x)f(y) Yo,y and assume that f is not identically 0. Prove that f(x) = e** for
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some complex number «. If f is bounded show that f necessarily take values
in S! and f(x) = ¢* for some real number 3. Conclude that if f: ST — St is
a mesurable homomorphism then f(x) = 2™ for some integer n.

[See also Problem 280 and Problem 613]
T4y

Let g(z /f t)dt. Then g(z +y) — g(z /f /(s+m)ds:

x)/f(s)ds = f(z)g(y). If g(y) # O this gives f(z) = % V. Since

0

g is absolutely continuous on finite intervals so is f by this formula. [ g = 0
implies f = 0]. In particular g is continuously differentiable and so is f by
above formula. Now f/'(z +y) = f(x)f (y). Put y = 0 and solve the equation
f'(x) = f()f'(0) to get f(z) = e/ ©=. [ f2(0) = £(0) so f(0) = 0 or 1. If
f(0) =0 then f(z) = f(0)f(xz) =0 Vz so f(0) must be 1]. We have proved the
first part with a = £/(0). Suppose f is also bounded. Since |e®®| = e(Re)?* we
must have Re v = 0 proving that f(z) = ¢’# for some real number 3. Finally if
f: 8t — S'is a mesurable homomorphism and h(t) = f(e2™) then h(t) = et
for some real number 3 so f(e?™) = e?#*. The fact that f(1) = 1 forces h(1)
to be 1 and hence 8/27 is an integer n. Hence f(z) = 2.

Problem 613

Let f : R — C be mesurable with f(z + y) = f(z)f(y) Va,y and assume
that f is not identically 0. Prove that f(z) = e** for some complex number
a. Prove that all measurable homomorphisms of S! are of the type z — 2" for
some integer n.

[ Local boundedness has been dropped from Problem 612].

Let f : R — C be mesurable with f(z +y) = f(x)f(y) Vz,y and assume
that f is not identically 0. Let ¢(z) = |f(x)]. If f(x) = 0 for some z then
fly) = f(x)f(y —2) =0 Vy so ¢(z) > 0 for all z. Now log ¢(z) is an additive
measurable map of R into itself and hence log ¢(t) = ct for some real number
c. Now consider the function fi(t) = % Problem 612 can be applied to

this function and we get fi(t) = et for some real number 3. Thus f(t) =
f1(t)é(t) = ePt*+et. The second part is proved as in Problem612.

Problem 614

Prove Vitali - Hahn - Saks Theorem: if {u,} is a sequence of complex
measures on (Q,F) and p(A) = lim p,(A) exists for each A € F then p is a

complex measure.

Remark: Problem 335 shows that the result fails of we replace complex
measures by positive measures.
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Let A\(A Z o {‘1’1‘“‘(3)@ Then A is a positive finite measure and each

Iy, 1S absolutely Contlnuous w.r.t. A Let S be the set of all {0,1} valued
functions in L'(\) : S = {I4 : A € F}. Then S is closed in L' and hence it is a

complete metric space. Let € > 0. Then S = U m {I4:|p,(A) — p,, (A)] <
k=1nm>k
¢}. By Baire Category Theorem there exists k¥ € N;A € F and r > 0 such
that |[Ip — 14|, < r implies |u, (B) — ,,(B)| < € whenever n,m > k. Hence
I — 1al|; < r implies |p,(B) — u(B)| < € whenever n > k. If A\(E) < r then
[Tave — 1all; < r and ||[Iag — IA||1 < r. Hence |p,(AUE) —pu(AUE)| <e
and |p, (A\E) — p(A\E)| < ¢ whenever n > k. Since pu(E) = p(AUE)—p(A\E)
and p,(E) = p, (AU E) — p, (A\E) we get |p,(E) — u(E)| < 2¢ whenever
n > k. In particular this holds for n = k£ and the fact that ;;, << A shows that
w(E) — 0 as A(E) — 0. Tt follows easily from this that u is countably additive.

Problem 615

o0 o0
Let a,, > 0 Vn. Show that if Z a, sinnx is a Fourier series the Z < oo.
n=1 n=1

o]
Suppose there is a function f in L'[0,27] such that Zan sinnx is the
n=1

Fourier series of f. Since sinnz = % we get f(n) = Grifn>1, f(n) =

< —-land 0ifn =0. Let gz /f t)dt. Then g(n) = —g= if
n>1gn)= < —1. Let {Fn} be the FeJer sequence. Then Fyxg — ¢
N
uniformly by Fejer’s Theorem. In particular this gives Z (1- A‘,Jrll )g(n) —
n=—N

9(0) from which the conclusion follows easily.
Problem 616

If f is upper semi-continuous on a complete metric space X show that it is
continuous at all points except those on a set of first category.

Let € > 0 and A, = {z : there exists sequences {z,}, {y,} converging to x
with f(zn) — f(yn) > € Vn}. [ Ac is the set of points at which the oscillation of
[ exceeds €.

We claim that each A, is a closed set with empty interior and f is continuous

on the complement of U Aim. Let {u;} € Ac and u; — u. If u ¢ Ac then

n=1
there is a ball B(u,d) such that f(z) — f(y) < e Va,y € B(u,d). If j is so
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large that d(uj,u) < 0/2 then u; € A. and hence there exist &, ¢ such that
d(& uy) < 6/2,d(& u;) < 6/2 and f(€) — f({) > e. This is a contradiction
because £,¢ € B(u,d). Hence A. is closed. If possible let A, have an interior
point u. Since f is upper semi-continuous f(w) < f(u) 4+ § whenever d(w,u)
is sufficiently small. Let {z,}, {yn} converge to v with f(z,) — f(yn) > € Vn.
But then f(y,) < f(zn) —e < f(u) —&/2 for n sufficiently large. This proves
that there are points z in the interior of A, which are arbitrarily close to u
satisfying the inequality f(z) < f(u) — /2. Repeating this argument we get
points 21, 22, ... such that f(z,) < f(u) — % . This would be a contradiction if f
is bounded below. In particular we have proved that the upper semi-continuous

function e is continuous. Hence f itself is continuous. Finally if = ¢ U Ai/n

then for any N, f(v) — f(u) < % whenever u and v are sufficiently close to z
proving that f is continuous at x.

Problem 617

Let C be an unbounded convex set in R*. Show that C contains a ray, i.e.
it contains {a + tz : t > 0} for some a,z € R* x # 0.

The proof can be reduced to the case when C' has non- empty interior and
then to the case 0 € C°. Let ||x,| — oo, {z,} C C. Let Ten ”an — z. Let

t > 0. We complete the proof by showing that tx € C. We have tx = 7(y] +
(2tz —y;)) where y; = Tl Tp,. Note that y; — 2tx as j — oo so yj —2tr e C

whenever is j sufficiently large Also y; = ” Han +(1- IE ”)O e Cif

”x I < 1 which is true whenever is j sufﬁc1ently large.
n

Problem 618

Find all complex Borel measures p on [0,1] such that f — / fdp is a
homomorphism on the alegbra C[0, 1]

(ie. /fdu/gd,u = /fgdu Vf,g € C[0,1]). Find all complex Borel mea-
sures p on [0,1] such that /fd,u # 0 whenever f : [0,1] — C\{0} is continuous
and p([0,1]) =

If C C C[0,1] is closed then there exist continuous functions f,, : [0,1] —
[0,1] such that f, = 1 on C and f,(z) = 0 if d(z,C) > 1. Since f, — Ic
pointwise and /fndu/fndu = /f,%du Vn we get u?(C) = p(C) for every
closed set C'. Regularity of u implies that the same equation holds for all Borel
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sets C.In particular u(E) = 0 or 1 for every Borel set E. Assume that p is not the
zero measure. For each n there is a unique j, such that u([j"fl, I:]) = 1. Now

ﬂ[]"n L In] is a singleton {c} and p{c} = 1 which implies s = §.. Conversely,

/fdu/gdu = /fgdu Vf,g € C[0,1] if p = 0. for some ¢. By the theorem

of Gleason, Kahane and Zelazko ( see Theorem 10.9 of Functional Analysis by
Rudin) the answer to the second part is the same.

Problem 619

If X is an integrable random variable on a probability space (€2, F, P) and
G C F is a sigma algebra such that X and E(X|G) have the same distribution
show that E(X|G) = X almost surely.

Remark: the conclusion says that X is measurable w.r.t. G ( rather its
completion). Thus F(X|G) and X have different distribution unless there is no
real conditioning involved!

r—14+e®ifx>0

Let ¢(z) = r—14+e"ifz<0
Hence ¢(y) > ¢(x) + ¢'(z)(y — =) Vz,y and strict inequality holds if = # y. [ If
for example, y > x then W > ¢'(x) because W = ¢/(t) for some t €
(x,y) and ¢'(t) > ¢'(x)]. Note that |¢(x)| < 2+ |z| Va so ¢(X) is integrable and
also that ¢’ is bounded. Also, ¢(X) > ¢(E(X|G)) + ¢'(E(X|G)){X — E(X|G)}
with strict inequality except when X = E(X|G). However the two sides of the
inequality have the same mean because ¢(F(X|G)) has the same distribution
as ¢(X). It follows that equality holds almost surely and hence X = FE(X|G)
almost surely.

. Then ¢'(x) is strictly increasing on R.

Problem 620

If E(X,|G) — 0 a.s. and each X,, is a non-negative random varable show
that X,, — 0 in probability.

Let V;, = min{X,,,1}. Then E(Y,|9) < E(X,|G) — 0abd 0 < E(Y,|G) <1
so E(E(Y,|G)) — 0 or EY,, — 0. Hence Y,, — 0 in probabiliy. For 0 < ¢ < 1,
X, > ¢ implies Y,, > € so {X,,} — 0 in probability.

Problem 621

Suppose E(X|Y) = EX. Does it follow that X and Y are independent?

No. If Y = I, — Iy and /XdP /XdP /XdP =0 then E(X|Y) =

EX. However X and Y need not be 1ndependent [ On [0, 1] with Lebesgue
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mesure let X = Ig—Ip+Ig—Ig where E = (0, %),F = I(%%),G = I(%
I(}%],l) and Y = I 1) — I(a ;). Note that P{X = 1,Y = 1} # P{X = 1}P{
1}.

Problem 622

There exist sequences {an}, {b } C (0,00) such that apt1 < ap,bpi1 < b

Vn, Zanfoo anfoobut me{an,b } < 0.

n=1 n=1 n=1

We shall construct positive integers ky(N > 1) and positive numbers a/, s
and b),s with the following properties: a; and b; are independent of N, a; >

kN kN

Qg > ... > Qgy, b1 > by > > bk-N,Zaj > N,ij > N,a; < %(1 <j<
j=1 =1

kn),b; < %(1 < j <ky) and min{a;,b;} < %(1 <j<kn).

Of course {a,} and {b,} would then satisfy our requirements. We start
with a1 = by = k1 = 1. Suppose we have constructed k1, ..., kn, a;(j < kn) and
bj(j < kn). We use the following steps to construct kyy1 and aj,b;(kny < j <
kEni1)-

. 1 1 _
Step 1: pick [ > max{(akN 1), kn, (m 1)}.
Lo e . 1
Step 2: pick a positive integer r such that Z prs] >N—+1.
p=1
Step 3: pick a positive integer m such that m > max{v/1+r—1),{({+7)%—
1h kv + 7}

S
Step 4: pick a positive integer s such that Z ﬁ > N+1.
p=1
Let kyy1 =kn +7+s.
if 1 < ] < r, akN+J+p =

Let Akn+j = if 1 < p < S, bk?N+J ==

7 (is)”

(lﬂ) if1<yj<rbiyijip= m+p,1f1<p<s

Remark: if we drop the requirement that {a,} and {b,} are decreasing

sequences the solution becomes trivial: let a,, = 12 or % according as n is even

or odd and b, = = or % according as n is even or odd.

Problem 623

Let t,t1,ty, ... € R. Show that t,, — ¢ if and only if f(t,) — f(t) Vf € L1(R).
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‘only if” part is by continuity of the Fourier transform. For the ’if” part let
f(z) = e®e=*"/2 (where a is a real number) to conclude that ¢/@tne=tn/2
¢iate=t*/2 This implies e~/2 — e=t*/2 and i — ¢iat, Also ei@tne=th/2 —
eiete=t"/2 implies that {t,} is bounded. It follows from ei®» — e that ¢ is
the only limit point of {¢,}.

—

iat

Problem 624

If 1 is a complex Borel measure on a locally compact Hausdorff space X
such that ||u| = u(X) show that p is a positive measure.

Let v = |u| and ¢ = d" Then |¢| =1 a.e. [v] and /¢d1/ = p(X) = ||lul =

v(X). Hence v(X) = Re/(,zbdy = /Regbdy < /1du =v(X). Hence Re¢p =1
a.e. [v]. Since |¢| =1 a.e. [v] this implies ¢ =1 a.e. [v] so pu = v.

Problem 625
Prove that {f : f € LY(R)} = {g*h: g,h € L2(R)}.

Remark: if g,h € L?(R) then g x h is well-defined by Holder’s inequality.
Above statement implies that it is continuous and vanishes at +oo.

Let f € L*(R). There exist functions fi, fo in L?(R) such that f = fifo.
There exist functions ¢, ¢, in L?(R) such that f; = qAbhfg (}52 Let g(z) =
br(—2) and h(z) = a(—z). Then (g+h) (t) = GOIR(E) = dy(~t)by(~1) =
fl( t)f2(—t) = f(—t). Taking Fourier transforms we get (gxh)(—z) = f(—x) so
f = gxh. Conversely, if g, h € L2(R) then g = g1, h = hy for some g1, h1 L2(R).

Let f = gihi. Then f € LY(R) and (g+ h) (z) = g(x)h(x) = f(—z) = f ()
and hence g * h = f.

Problem 626

Let (Q,F, P) be a probability space, G be a sub-sigma field of F, and let
X and Y be two random vriables on (Q F, P). Suppose suppose there is a set
E € F such that P(E) = 1 and P(X}(A)|G)(w) = I14(Y (w)) for every Borel
set A whenever w € FE. Prove that X =Y a.s. and that X is measurable w.r.t
the P— completion of G.

We prove that P{X 1 (A)NY~ (AC)} = 0 for any Borel set A. This implies

that X = Y a.s. and hence that P(X7YA)|G) = 14(X) a.s. which implies
X~Y(A) € G for each A if G is complete w.r.t. P. The hypothesis implies that

298



Y~1(A) = (Y71(A))¢ € G and hence / P(X71(A)|G)dP = P{X~1(A) N
y-1(Ac)
Y ~1(A°)}. But the left side of this equation is / IA(Y)dP = P{Y—1(A)N

Y-1(A)
Y~1(A¢)} = 0. [ We used the fact that if v is a probability measure on R? such

that v(A x A°) = 0 VA Borel in R then v(A) = 1, where A is the diagonal:
A = {(z.z) : * € R?}. Indeed A is the union of the sets (—oo,r) X (—o0,7)°
and (r,00)) x (r,00)¢ as r varies over Q).

Problem 627

Let X,, — 0 a.s. and assume that p{X,, = 0} = 0 for each n. Show that
there exists a measurable function f : R — (0, c0) such that Z f(Xn) < o0 as.

Let Y; be the number of positive integers n for which % < | Xnl < ]%1 [
Define Yj(w) to be 0 if X, (w) - 0]. Then Yj is a positive random variable
for each j. Claim: there exists a; > 0 (j = 1,2,...) such that Zanj < o0

J
j% and note that
ZP{a]—Yj > ]%} < oo which implies a;Y; < %2 eventually, with probability 1.

a.s.. To see this just choose a; such that P{a;Y; > J%} <

j

The claim is proved. Now let f(z) = a; on {z : % <lz| < Jﬁh J=2,3,....

[ we can take f to be 1 on {z : 3 < |#| < oo} U{0}]. Then Zf(Xn) =
a.

Z Z aj:Zanj<oo S..
J

I i<IXal<iy
Problem 628

Call a subset A of R nicely covered (nc) if there is a sequence of open sets
{U,} such that A C U, for each n and any open set V that contains A necessarily
contains some U,,. Show that A is nc if and only if it is the union of a compact
set and an open set

If A= KUU where K is compact and U is open let U, = {z : d(z,K) <
%} UU. Then U, is open, contains A and if V' is an open set with A C V then
K CVand U C V. It follows that {z : d(z,K) < 1} C V for some n and
U, C V for that n. Hence A is nc. Coversely suppose A is nc. If we show
that A\ A° is compact the proof would be complete because A = A% U (A\ A?).
Suppose A\A? is not compact. Let {z,} be a sequence in A\ A° which has no
limit point in A\A°. If {z,} has a limit point, say z, in A then = ¢ A\A°
so x € A°. But then z,, € A° for n sufficiently large which is a contradiction.
Hence {z,} has no limit point in A. By hypothesis there is a sequence of open
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sets {U,} such that A C U, for each n and any open set V that contains A
necessarily contains some U,,. There exists y,, € U, \ A such that d(z,,y,) < %
[ This is becase z, € JANU,]. Let V = B® where B = {y1,92,...}. Note
that V' is open and A C V. This is because any limit point of {y,} is also a
limit point of {x,,} and hence it does not belong to A. proving that B C A€ or
A C V. It follows that U, C V for some n. However y,, € U, but y,, ¢ V. This
completes the proof.

300



